Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _2nd_1 : symb | activate : symb | cons : symb | from : symb | n__cons : symb | n__from : symb | s : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._2nd_1 => 1 | M.activate => 1 | M.cons => 2 | M.from => 1 | M.n__cons => 2 | M.n__from => 1 | M.s => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _2nd_1 x1 := F0 M._2nd_1 (Vcons x1 Vnil). Definition activate x1 := F0 M.activate (Vcons x1 Vnil). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition from x1 := F0 M.from (Vcons x1 Vnil). Definition n__cons x2 x1 := F0 M.n__cons (Vcons x2 (Vcons x1 Vnil)). Definition n__from x1 := F0 M.n__from (Vcons x1 Vnil). Definition s x1 := F0 M.s (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0._2nd_1 (S0.cons (V0 0) (S0.n__cons (V0 1) (V0 2)))) (S0.activate (V0 1)) :: R0 (S0.from (V0 0)) (S0.cons (V0 0) (S0.n__from (S0.s (V0 0)))) :: R0 (S0.cons (V0 0) (V0 1)) (S0.n__cons (V0 0) (V0 1)) :: R0 (S0.from (V0 0)) (S0.n__from (V0 0)) :: R0 (S0.activate (S0.n__cons (V0 0) (V0 1))) (S0.cons (V0 0) (V0 1)) :: R0 (S0.activate (S0.n__from (V0 0))) (S0.from (V0 0)) :: R0 (S0.activate (V0 0)) (V0 0) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_2nd_1 x1 := F1 (hd_symb s1_p M._2nd_1) (Vcons x1 Vnil). Definition _2nd_1 x1 := F1 (int_symb s1_p M._2nd_1) (Vcons x1 Vnil). Definition hactivate x1 := F1 (hd_symb s1_p M.activate) (Vcons x1 Vnil). Definition activate x1 := F1 (int_symb s1_p M.activate) (Vcons x1 Vnil). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hfrom x1 := F1 (hd_symb s1_p M.from) (Vcons x1 Vnil). Definition from x1 := F1 (int_symb s1_p M.from) (Vcons x1 Vnil). Definition hn__cons x2 x1 := F1 (hd_symb s1_p M.n__cons) (Vcons x2 (Vcons x1 Vnil)). Definition n__cons x2 x1 := F1 (int_symb s1_p M.n__cons) (Vcons x2 (Vcons x1 Vnil)). Definition hn__from x1 := F1 (hd_symb s1_p M.n__from) (Vcons x1 Vnil). Definition n__from x1 := F1 (int_symb s1_p M.n__from) (Vcons x1 Vnil). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hactivate (S1.n__cons (V1 0) (V1 1))) (S1.hcons (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hfrom (V1 0)) (S1.hcons (V1 0) (S1.n__from (S1.s (V1 0)))) :: nil) :: ( R1 (S1.hactivate (S1.n__from (V1 0))) (S1.hfrom (V1 0)) :: nil) :: ( R1 (S1.h_2nd_1 (S1.cons (V1 0) (S1.n__cons (V1 1) (V1 2)))) (S1.hactivate (V1 1)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. left. co_scc. Qed.