Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | a__c : symb | a__g : symb | a__h : symb | c : symb | d : symb | g : symb | h : symb | mark : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.a__c => 0 | M.a__g => 1 | M.a__h => 1 | M.c => 0 | M.d => 0 | M.g => 1 | M.h => 1 | M.mark => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition a__c := F0 M.a__c Vnil. Definition a__g x1 := F0 M.a__g (Vcons x1 Vnil). Definition a__h x1 := F0 M.a__h (Vcons x1 Vnil). Definition c := F0 M.c Vnil. Definition d := F0 M.d Vnil. Definition g x1 := F0 M.g (Vcons x1 Vnil). Definition h x1 := F0 M.h (Vcons x1 Vnil). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.a__g (V0 0)) (S0.a__h (V0 0)) :: R0 S0.a__c S0.d :: R0 (S0.a__h S0.d) (S0.a__g S0.c) :: R0 (S0.mark (S0.g (V0 0))) (S0.a__g (V0 0)) :: R0 (S0.mark (S0.h (V0 0))) (S0.a__h (V0 0)) :: R0 (S0.mark S0.c) S0.a__c :: R0 (S0.mark S0.d) S0.d :: R0 (S0.a__g (V0 0)) (S0.g (V0 0)) :: R0 (S0.a__h (V0 0)) (S0.h (V0 0)) :: R0 S0.a__c S0.c :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition ha__c := F1 (hd_symb s1_p M.a__c) Vnil. Definition a__c := F1 (int_symb s1_p M.a__c) Vnil. Definition ha__g x1 := F1 (hd_symb s1_p M.a__g) (Vcons x1 Vnil). Definition a__g x1 := F1 (int_symb s1_p M.a__g) (Vcons x1 Vnil). Definition ha__h x1 := F1 (hd_symb s1_p M.a__h) (Vcons x1 Vnil). Definition a__h x1 := F1 (int_symb s1_p M.a__h) (Vcons x1 Vnil). Definition hc := F1 (hd_symb s1_p M.c) Vnil. Definition c := F1 (int_symb s1_p M.c) Vnil. Definition hd := F1 (hd_symb s1_p M.d) Vnil. Definition d := F1 (int_symb s1_p M.d) Vnil. Definition hg x1 := F1 (hd_symb s1_p M.g) (Vcons x1 Vnil). Definition g x1 := F1 (int_symb s1_p M.g) (Vcons x1 Vnil). Definition hh x1 := F1 (hd_symb s1_p M.h) (Vcons x1 Vnil). Definition h x1 := F1 (int_symb s1_p M.h) (Vcons x1 Vnil). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.c)) (S1.ha__c) :: nil) :: ( R1 (S1.ha__h (S1.d)) (S1.ha__g (S1.c)) :: R1 (S1.ha__g (V1 0)) (S1.ha__h (V1 0)) :: nil) :: ( R1 (S1.hmark (S1.g (V1 0))) (S1.ha__g (V1 0)) :: nil) :: ( R1 (S1.hmark (S1.h (V1 0))) (S1.ha__h (V1 0)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__g) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__g) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__h) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__h) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__c) => nil | (int_symb M.a__c) => (1%Z, Vnil) :: nil | (hd_symb M.d) => nil | (int_symb M.d) => (1%Z, Vnil) :: nil | (hd_symb M.c) => nil | (int_symb M.c) => nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.g) => nil | (int_symb M.g) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.h) => nil | (int_symb M.h) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.ha__g (V1 0)) (S1.ha__h (V1 0)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. Qed.