f#( f( X ) ) | → | c#( n__f( g( n__f( X ) ) ) ) |
c#( X ) | → | d#( activate( X ) ) |
c#( X ) | → | activate#( X ) |
h#( X ) | → | c#( n__d( X ) ) |
activate#( n__f( X ) ) | → | f#( X ) |
activate#( n__d( X ) ) | → | d#( X ) |
The dependency pairs are split into 1 component(s).
c#( X ) | → | activate#( X ) |
activate#( n__f( X ) ) | → | f#( X ) |
f#( f( X ) ) | → | c#( n__f( g( n__f( X ) ) ) ) |
Linear polynomial interpretation over the naturals
[h (x1) ] | = | 3 x1 + 3 | |
[c# (x1) ] | = | x1 | |
[n__d (x1) ] | = | 3 | |
[activate# (x1) ] | = | x1 | |
[f (x1) ] | = | 3 x1 + 3 | |
[d (x1) ] | = | 3 | |
[c (x1) ] | = | 3 | |
[n__f (x1) ] | = | 3 x1 | |
[f# (x1) ] | = | 3 x1 | |
[g (x1) ] | = | 0 | |
[activate (x1) ] | = | 3 x1 + 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
c#( X ) | → | activate#( X ) |
activate#( n__f( X ) ) | → | f#( X ) |
The dependency pairs are split into 0 component(s).