a__terms#( N ) | → | a__sqr#( mark( N ) ) |
a__terms#( N ) | → | mark#( N ) |
a__add#( 0 , X ) | → | mark#( X ) |
a__first#( s( X ) , cons( Y , Z ) ) | → | mark#( Y ) |
mark#( terms( X ) ) | → | a__terms#( mark( X ) ) |
mark#( terms( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | a__sqr#( mark( X ) ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | a__add#( mark( X1 ) , mark( X2 ) ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( dbl( X ) ) | → | a__dbl#( mark( X ) ) |
mark#( dbl( X ) ) | → | mark#( X ) |
mark#( first( X1 , X2 ) ) | → | a__first#( mark( X1 ) , mark( X2 ) ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( recip( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
a__terms#( N ) | → | mark#( N ) |
mark#( terms( X ) ) | → | a__terms#( mark( X ) ) |
mark#( terms( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | a__add#( mark( X1 ) , mark( X2 ) ) |
a__add#( 0 , X ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( dbl( X ) ) | → | mark#( X ) |
mark#( first( X1 , X2 ) ) | → | a__first#( mark( X1 ) , mark( X2 ) ) |
a__first#( s( X ) , cons( Y , Z ) ) | → | mark#( Y ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( recip( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[dbl (x1) ] | = | x1 + 3 | |
[first (x1, x2) ] | = | 2 x1 + x2 | |
[a__first (x1, x2) ] | = | 2 x1 + x2 | |
[mark# (x1) ] | = | x1 | |
[0] | = | 0 | |
[a__add# (x1, x2) ] | = | x1 | |
[a__add (x1, x2) ] | = | 2 x1 + 2 x2 | |
[a__terms# (x1) ] | = | x1 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 + 1 | |
[a__dbl (x1) ] | = | x1 + 3 | |
[a__terms (x1) ] | = | 3 x1 + 3 | |
[sqr (x1) ] | = | x1 | |
[terms (x1) ] | = | 3 x1 + 3 | |
[recip (x1) ] | = | x1 + 1 | |
[add (x1, x2) ] | = | 2 x1 + 2 x2 | |
[s (x1) ] | = | 0 | |
[a__first# (x1, x2) ] | = | x1 | |
[a__sqr (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__terms#( N ) | → | mark#( N ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | a__add#( mark( X1 ) , mark( X2 ) ) |
a__add#( 0 , X ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( first( X1 , X2 ) ) | → | a__first#( mark( X1 ) , mark( X2 ) ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
The dependency pairs are split into 1 component(s).
mark#( add( X1 , X2 ) ) | → | a__add#( mark( X1 ) , mark( X2 ) ) |
a__add#( 0 , X ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
[a__first (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[mark# (x1) ] | = | x1 | |
[0] | = | 0 | |
[a__add# (x1, x2) ] | = | x1 | |
[a__add (x1, x2) ] | = | 2 x1 + 3 x2 + 3 | |
[nil] | = | 1 | |
[cons (x1, x2) ] | = | x1 + 3 | |
[a__dbl (x1) ] | = | 0 | |
[a__terms (x1) ] | = | 3 | |
[terms (x1) ] | = | 2 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 2 x1 + 2 | |
[add (x1, x2) ] | = | 2 x1 + 3 x2 + 2 | |
[s (x1) ] | = | 0 | |
[a__sqr (x1) ] | = | 2 x1 + 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__add#( 0 , X ) | → | mark#( X ) |
The dependency pairs are split into 0 component(s).