Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | a__add : symb | a__dbl : symb | a__first : symb | a__sqr : symb | a__terms : symb | add : symb | cons : symb | dbl : symb | first : symb | mark : symb | nil : symb | recip : symb | s : symb | sqr : symb | terms : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.a__add => 2 | M.a__dbl => 1 | M.a__first => 2 | M.a__sqr => 1 | M.a__terms => 1 | M.add => 2 | M.cons => 2 | M.dbl => 1 | M.first => 2 | M.mark => 1 | M.nil => 0 | M.recip => 1 | M.s => 1 | M.sqr => 1 | M.terms => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition a__add x2 x1 := F0 M.a__add (Vcons x2 (Vcons x1 Vnil)). Definition a__dbl x1 := F0 M.a__dbl (Vcons x1 Vnil). Definition a__first x2 x1 := F0 M.a__first (Vcons x2 (Vcons x1 Vnil)). Definition a__sqr x1 := F0 M.a__sqr (Vcons x1 Vnil). Definition a__terms x1 := F0 M.a__terms (Vcons x1 Vnil). Definition add x2 x1 := F0 M.add (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition dbl x1 := F0 M.dbl (Vcons x1 Vnil). Definition first x2 x1 := F0 M.first (Vcons x2 (Vcons x1 Vnil)). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition recip x1 := F0 M.recip (Vcons x1 Vnil). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition sqr x1 := F0 M.sqr (Vcons x1 Vnil). Definition terms x1 := F0 M.terms (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.a__terms (V0 0)) (S0.cons (S0.recip (S0.a__sqr (S0.mark (V0 0)))) (S0.terms (S0.s (V0 0)))) :: R0 (S0.a__sqr S0._0_1) S0._0_1 :: R0 (S0.a__sqr (S0.s (V0 0))) (S0.s (S0.add (S0.sqr (V0 0)) (S0.dbl (V0 0)))) :: R0 (S0.a__dbl S0._0_1) S0._0_1 :: R0 (S0.a__dbl (S0.s (V0 0))) (S0.s (S0.s (S0.dbl (V0 0)))) :: R0 (S0.a__add S0._0_1 (V0 0)) (S0.mark (V0 0)) :: R0 (S0.a__add (S0.s (V0 0)) (V0 1)) (S0.s (S0.add (V0 0) (V0 1))) :: R0 (S0.a__first S0._0_1 (V0 0)) S0.nil :: R0 (S0.a__first (S0.s (V0 0)) (S0.cons (V0 1) (V0 2))) (S0.cons (S0.mark (V0 1)) (S0.first (V0 0) (V0 2))) :: R0 (S0.mark (S0.terms (V0 0))) (S0.a__terms (S0.mark (V0 0))) :: R0 (S0.mark (S0.sqr (V0 0))) (S0.a__sqr (S0.mark (V0 0))) :: R0 (S0.mark (S0.add (V0 0) (V0 1))) (S0.a__add (S0.mark (V0 0)) (S0.mark (V0 1))) :: R0 (S0.mark (S0.dbl (V0 0))) (S0.a__dbl (S0.mark (V0 0))) :: R0 (S0.mark (S0.first (V0 0) (V0 1))) (S0.a__first (S0.mark (V0 0)) (S0.mark (V0 1))) :: R0 (S0.mark (S0.cons (V0 0) (V0 1))) (S0.cons (S0.mark (V0 0)) (V0 1)) :: R0 (S0.mark (S0.recip (V0 0))) (S0.recip (S0.mark (V0 0))) :: R0 (S0.mark (S0.s (V0 0))) (S0.s (V0 0)) :: R0 (S0.mark S0._0_1) S0._0_1 :: R0 (S0.mark S0.nil) S0.nil :: R0 (S0.a__terms (V0 0)) (S0.terms (V0 0)) :: R0 (S0.a__sqr (V0 0)) (S0.sqr (V0 0)) :: R0 (S0.a__add (V0 0) (V0 1)) (S0.add (V0 0) (V0 1)) :: R0 (S0.a__dbl (V0 0)) (S0.dbl (V0 0)) :: R0 (S0.a__first (V0 0) (V0 1)) (S0.first (V0 0) (V0 1)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition ha__add x2 x1 := F1 (hd_symb s1_p M.a__add) (Vcons x2 (Vcons x1 Vnil)). Definition a__add x2 x1 := F1 (int_symb s1_p M.a__add) (Vcons x2 (Vcons x1 Vnil)). Definition ha__dbl x1 := F1 (hd_symb s1_p M.a__dbl) (Vcons x1 Vnil). Definition a__dbl x1 := F1 (int_symb s1_p M.a__dbl) (Vcons x1 Vnil). Definition ha__first x2 x1 := F1 (hd_symb s1_p M.a__first) (Vcons x2 (Vcons x1 Vnil)). Definition a__first x2 x1 := F1 (int_symb s1_p M.a__first) (Vcons x2 (Vcons x1 Vnil)). Definition ha__sqr x1 := F1 (hd_symb s1_p M.a__sqr) (Vcons x1 Vnil). Definition a__sqr x1 := F1 (int_symb s1_p M.a__sqr) (Vcons x1 Vnil). Definition ha__terms x1 := F1 (hd_symb s1_p M.a__terms) (Vcons x1 Vnil). Definition a__terms x1 := F1 (int_symb s1_p M.a__terms) (Vcons x1 Vnil). Definition hadd x2 x1 := F1 (hd_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition add x2 x1 := F1 (int_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hdbl x1 := F1 (hd_symb s1_p M.dbl) (Vcons x1 Vnil). Definition dbl x1 := F1 (int_symb s1_p M.dbl) (Vcons x1 Vnil). Definition hfirst x2 x1 := F1 (hd_symb s1_p M.first) (Vcons x2 (Vcons x1 Vnil)). Definition first x2 x1 := F1 (int_symb s1_p M.first) (Vcons x2 (Vcons x1 Vnil)). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hrecip x1 := F1 (hd_symb s1_p M.recip) (Vcons x1 Vnil). Definition recip x1 := F1 (int_symb s1_p M.recip) (Vcons x1 Vnil). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition hsqr x1 := F1 (hd_symb s1_p M.sqr) (Vcons x1 Vnil). Definition sqr x1 := F1 (int_symb s1_p M.sqr) (Vcons x1 Vnil). Definition hterms x1 := F1 (hd_symb s1_p M.terms) (Vcons x1 Vnil). Definition terms x1 := F1 (int_symb s1_p M.terms) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.dbl (V1 0))) (S1.ha__dbl (S1.mark (V1 0))) :: nil) :: ( R1 (S1.hmark (S1.sqr (V1 0))) (S1.ha__sqr (S1.mark (V1 0))) :: nil) :: ( R1 (S1.ha__terms (V1 0)) (S1.ha__sqr (S1.mark (V1 0))) :: nil) :: ( R1 (S1.ha__terms (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.terms (V1 0))) (S1.ha__terms (S1.mark (V1 0))) :: R1 (S1.hmark (S1.terms (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.sqr (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.add (V1 0) (V1 1))) (S1.ha__add (S1.mark (V1 0)) (S1.mark (V1 1))) :: R1 (S1.ha__add (S1._0_1) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.add (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.add (V1 0) (V1 1))) (S1.hmark (V1 1)) :: R1 (S1.hmark (S1.dbl (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.first (V1 0) (V1 1))) (S1.ha__first (S1.mark (V1 0)) (S1.mark (V1 1))) :: R1 (S1.ha__first (S1.s (V1 0)) (S1.cons (V1 1) (V1 2))) (S1.hmark (V1 1)) :: R1 (S1.hmark (S1.first (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.first (V1 0) (V1 1))) (S1.hmark (V1 1)) :: R1 (S1.hmark (S1.cons (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.recip (V1 0))) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__terms) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__terms) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.recip) => nil | (int_symb M.recip) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__sqr) => nil | (int_symb M.a__sqr) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.terms) => nil | (int_symb M.terms) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.sqr) => nil | (int_symb M.sqr) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.dbl) => nil | (int_symb M.dbl) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__dbl) => nil | (int_symb M.a__dbl) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__add) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__add) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__first) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__first) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.first) => nil | (int_symb M.first) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.first (V1 0) (V1 1))) (S1.ha__first (S1.mark (V1 0)) (S1.mark (V1 1))) :: nil) :: ( R1 (S1.hmark (S1.add (V1 0) (V1 1))) (S1.ha__add (S1.mark (V1 0)) (S1.mark (V1 1))) :: R1 (S1.ha__add (S1._0_1) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.sqr (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.add (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.add (V1 0) (V1 1))) (S1.hmark (V1 1)) :: R1 (S1.hmark (S1.first (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.first (V1 0) (V1 1))) (S1.hmark (V1 1)) :: nil) :: ( R1 (S1.ha__terms (V1 0)) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__terms) => nil | (int_symb M.a__terms) => (3%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.recip) => nil | (int_symb M.recip) => nil | (hd_symb M.a__sqr) => nil | (int_symb M.a__sqr) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.terms) => nil | (int_symb M.terms) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.sqr) => nil | (int_symb M.sqr) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.dbl) => nil | (int_symb M.dbl) => nil | (hd_symb M.a__dbl) => nil | (int_symb M.a__dbl) => nil | (hd_symb M.a__add) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__add) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__first) => nil | (int_symb M.a__first) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.first) => nil | (int_symb M.first) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* graph decomposition 3 *) Definition cs3 : list (list (@ATrs.rule s1)) := ( R1 (S1.ha__add (S1._0_1) (V1 0)) (S1.hmark (V1 0)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. right. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI2.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs3; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. Qed.