Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | add : symb | cons : symb | dbl : symb | first : symb | nil : symb | recip : symb | s : symb | sqr : symb | terms : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.add => 2 | M.cons => 1 | M.dbl => 1 | M.first => 2 | M.nil => 0 | M.recip => 1 | M.s => 0 | M.sqr => 1 | M.terms => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition add x2 x1 := F0 M.add (Vcons x2 (Vcons x1 Vnil)). Definition cons x1 := F0 M.cons (Vcons x1 Vnil). Definition dbl x1 := F0 M.dbl (Vcons x1 Vnil). Definition first x2 x1 := F0 M.first (Vcons x2 (Vcons x1 Vnil)). Definition nil := F0 M.nil Vnil. Definition recip x1 := F0 M.recip (Vcons x1 Vnil). Definition s := F0 M.s Vnil. Definition sqr x1 := F0 M.sqr (Vcons x1 Vnil). Definition terms x1 := F0 M.terms (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.terms (V0 0)) (S0.cons (S0.recip (S0.sqr (V0 0)))) :: R0 (S0.sqr S0._0_1) S0._0_1 :: R0 (S0.sqr S0.s) S0.s :: R0 (S0.dbl S0._0_1) S0._0_1 :: R0 (S0.dbl S0.s) S0.s :: R0 (S0.add S0._0_1 (V0 0)) (V0 0) :: R0 (S0.add S0.s (V0 0)) S0.s :: R0 (S0.first S0._0_1 (V0 0)) S0.nil :: R0 (S0.first S0.s (S0.cons (V0 0))) (S0.cons (V0 0)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hadd x2 x1 := F1 (hd_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition add x2 x1 := F1 (int_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x1 := F1 (hd_symb s1_p M.cons) (Vcons x1 Vnil). Definition cons x1 := F1 (int_symb s1_p M.cons) (Vcons x1 Vnil). Definition hdbl x1 := F1 (hd_symb s1_p M.dbl) (Vcons x1 Vnil). Definition dbl x1 := F1 (int_symb s1_p M.dbl) (Vcons x1 Vnil). Definition hfirst x2 x1 := F1 (hd_symb s1_p M.first) (Vcons x2 (Vcons x1 Vnil)). Definition first x2 x1 := F1 (int_symb s1_p M.first) (Vcons x2 (Vcons x1 Vnil)). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hrecip x1 := F1 (hd_symb s1_p M.recip) (Vcons x1 Vnil). Definition recip x1 := F1 (int_symb s1_p M.recip) (Vcons x1 Vnil). Definition hs := F1 (hd_symb s1_p M.s) Vnil. Definition s := F1 (int_symb s1_p M.s) Vnil. Definition hsqr x1 := F1 (hd_symb s1_p M.sqr) (Vcons x1 Vnil). Definition sqr x1 := F1 (int_symb s1_p M.sqr) (Vcons x1 Vnil). Definition hterms x1 := F1 (hd_symb s1_p M.terms) (Vcons x1 Vnil). Definition terms x1 := F1 (int_symb s1_p M.terms) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hterms (V1 0)) (S1.hsqr (V1 0)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.