active#( terms( N ) ) | → | mark#( cons( recip( sqr( N ) ) , terms( s( N ) ) ) ) |
active#( terms( N ) ) | → | cons#( recip( sqr( N ) ) , terms( s( N ) ) ) |
active#( terms( N ) ) | → | recip#( sqr( N ) ) |
active#( terms( N ) ) | → | sqr#( N ) |
active#( terms( N ) ) | → | terms#( s( N ) ) |
active#( terms( N ) ) | → | s#( N ) |
active#( sqr( 0 ) ) | → | mark#( 0 ) |
active#( sqr( s( X ) ) ) | → | mark#( s( add( sqr( X ) , dbl( X ) ) ) ) |
active#( sqr( s( X ) ) ) | → | s#( add( sqr( X ) , dbl( X ) ) ) |
active#( sqr( s( X ) ) ) | → | add#( sqr( X ) , dbl( X ) ) |
active#( sqr( s( X ) ) ) | → | sqr#( X ) |
active#( sqr( s( X ) ) ) | → | dbl#( X ) |
active#( dbl( 0 ) ) | → | mark#( 0 ) |
active#( dbl( s( X ) ) ) | → | mark#( s( s( dbl( X ) ) ) ) |
active#( dbl( s( X ) ) ) | → | s#( s( dbl( X ) ) ) |
active#( dbl( s( X ) ) ) | → | s#( dbl( X ) ) |
active#( dbl( s( X ) ) ) | → | dbl#( X ) |
active#( add( 0 , X ) ) | → | mark#( X ) |
active#( add( s( X ) , Y ) ) | → | mark#( s( add( X , Y ) ) ) |
active#( add( s( X ) , Y ) ) | → | s#( add( X , Y ) ) |
active#( add( s( X ) , Y ) ) | → | add#( X , Y ) |
active#( first( 0 , X ) ) | → | mark#( nil ) |
active#( first( s( X ) , cons( Y , Z ) ) ) | → | mark#( cons( Y , first( X , Z ) ) ) |
active#( first( s( X ) , cons( Y , Z ) ) ) | → | cons#( Y , first( X , Z ) ) |
active#( first( s( X ) , cons( Y , Z ) ) ) | → | first#( X , Z ) |
mark#( terms( X ) ) | → | active#( terms( mark( X ) ) ) |
mark#( terms( X ) ) | → | terms#( mark( X ) ) |
mark#( terms( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | active#( cons( mark( X1 ) , X2 ) ) |
mark#( cons( X1 , X2 ) ) | → | cons#( mark( X1 ) , X2 ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( recip( X ) ) | → | active#( recip( mark( X ) ) ) |
mark#( recip( X ) ) | → | recip#( mark( X ) ) |
mark#( recip( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | active#( sqr( mark( X ) ) ) |
mark#( sqr( X ) ) | → | sqr#( mark( X ) ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( s( X ) ) | → | active#( s( X ) ) |
mark#( s( X ) ) | → | s#( X ) |
mark#( 0 ) | → | active#( 0 ) |
mark#( add( X1 , X2 ) ) | → | active#( add( mark( X1 ) , mark( X2 ) ) ) |
mark#( add( X1 , X2 ) ) | → | add#( mark( X1 ) , mark( X2 ) ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( dbl( X ) ) | → | active#( dbl( mark( X ) ) ) |
mark#( dbl( X ) ) | → | dbl#( mark( X ) ) |
mark#( dbl( X ) ) | → | mark#( X ) |
mark#( first( X1 , X2 ) ) | → | active#( first( mark( X1 ) , mark( X2 ) ) ) |
mark#( first( X1 , X2 ) ) | → | first#( mark( X1 ) , mark( X2 ) ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( nil ) | → | active#( nil ) |
terms#( mark( X ) ) | → | terms#( X ) |
terms#( active( X ) ) | → | terms#( X ) |
cons#( mark( X1 ) , X2 ) | → | cons#( X1 , X2 ) |
cons#( X1 , mark( X2 ) ) | → | cons#( X1 , X2 ) |
cons#( active( X1 ) , X2 ) | → | cons#( X1 , X2 ) |
cons#( X1 , active( X2 ) ) | → | cons#( X1 , X2 ) |
recip#( mark( X ) ) | → | recip#( X ) |
recip#( active( X ) ) | → | recip#( X ) |
sqr#( mark( X ) ) | → | sqr#( X ) |
sqr#( active( X ) ) | → | sqr#( X ) |
s#( mark( X ) ) | → | s#( X ) |
s#( active( X ) ) | → | s#( X ) |
add#( mark( X1 ) , X2 ) | → | add#( X1 , X2 ) |
add#( X1 , mark( X2 ) ) | → | add#( X1 , X2 ) |
add#( active( X1 ) , X2 ) | → | add#( X1 , X2 ) |
add#( X1 , active( X2 ) ) | → | add#( X1 , X2 ) |
dbl#( mark( X ) ) | → | dbl#( X ) |
dbl#( active( X ) ) | → | dbl#( X ) |
first#( mark( X1 ) , X2 ) | → | first#( X1 , X2 ) |
first#( X1 , mark( X2 ) ) | → | first#( X1 , X2 ) |
first#( active( X1 ) , X2 ) | → | first#( X1 , X2 ) |
first#( X1 , active( X2 ) ) | → | first#( X1 , X2 ) |
The dependency pairs are split into 9 component(s).
mark#( terms( X ) ) | → | active#( terms( mark( X ) ) ) |
active#( terms( N ) ) | → | mark#( cons( recip( sqr( N ) ) , terms( s( N ) ) ) ) |
mark#( terms( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | active#( cons( mark( X1 ) , X2 ) ) |
active#( sqr( s( X ) ) ) | → | mark#( s( add( sqr( X ) , dbl( X ) ) ) ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( recip( X ) ) | → | active#( recip( mark( X ) ) ) |
active#( dbl( s( X ) ) ) | → | mark#( s( s( dbl( X ) ) ) ) |
mark#( recip( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | active#( sqr( mark( X ) ) ) |
active#( add( 0 , X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( s( X ) ) | → | active#( s( X ) ) |
active#( add( s( X ) , Y ) ) | → | mark#( s( add( X , Y ) ) ) |
mark#( add( X1 , X2 ) ) | → | active#( add( mark( X1 ) , mark( X2 ) ) ) |
active#( first( s( X ) , cons( Y , Z ) ) ) | → | mark#( cons( Y , first( X , Z ) ) ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( dbl( X ) ) | → | active#( dbl( mark( X ) ) ) |
mark#( dbl( X ) ) | → | mark#( X ) |
mark#( first( X1 , X2 ) ) | → | active#( first( mark( X1 ) , mark( X2 ) ) ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 0 | |
[active# (x1) ] | = | x1 | |
[dbl (x1) ] | = | 1 | |
[first (x1, x2) ] | = | 1 | |
[active (x1) ] | = | 0 | |
[mark# (x1) ] | = | 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 1 | |
[terms (x1) ] | = | 1 | |
[recip (x1) ] | = | 1 | |
[sqr (x1) ] | = | 1 | |
[add (x1, x2) ] | = | 1 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( terms( X ) ) | → | active#( terms( mark( X ) ) ) |
active#( terms( N ) ) | → | mark#( cons( recip( sqr( N ) ) , terms( s( N ) ) ) ) |
mark#( terms( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | active#( cons( mark( X1 ) , X2 ) ) |
active#( sqr( s( X ) ) ) | → | mark#( s( add( sqr( X ) , dbl( X ) ) ) ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( recip( X ) ) | → | active#( recip( mark( X ) ) ) |
active#( dbl( s( X ) ) ) | → | mark#( s( s( dbl( X ) ) ) ) |
mark#( recip( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | active#( sqr( mark( X ) ) ) |
active#( add( 0 , X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | mark#( X ) |
active#( add( s( X ) , Y ) ) | → | mark#( s( add( X , Y ) ) ) |
mark#( add( X1 , X2 ) ) | → | active#( add( mark( X1 ) , mark( X2 ) ) ) |
active#( first( s( X ) , cons( Y , Z ) ) ) | → | mark#( cons( Y , first( X , Z ) ) ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( dbl( X ) ) | → | active#( dbl( mark( X ) ) ) |
mark#( dbl( X ) ) | → | mark#( X ) |
mark#( first( X1 , X2 ) ) | → | active#( first( mark( X1 ) , mark( X2 ) ) ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 0 | |
[active# (x1) ] | = | x1 | |
[dbl (x1) ] | = | 1 | |
[first (x1, x2) ] | = | 1 | |
[active (x1) ] | = | 0 | |
[mark# (x1) ] | = | 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 1 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 1 | |
[add (x1, x2) ] | = | 1 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( terms( X ) ) | → | active#( terms( mark( X ) ) ) |
active#( terms( N ) ) | → | mark#( cons( recip( sqr( N ) ) , terms( s( N ) ) ) ) |
mark#( terms( X ) ) | → | mark#( X ) |
active#( sqr( s( X ) ) ) | → | mark#( s( add( sqr( X ) , dbl( X ) ) ) ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
active#( dbl( s( X ) ) ) | → | mark#( s( s( dbl( X ) ) ) ) |
mark#( recip( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | active#( sqr( mark( X ) ) ) |
active#( add( 0 , X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | mark#( X ) |
active#( add( s( X ) , Y ) ) | → | mark#( s( add( X , Y ) ) ) |
mark#( add( X1 , X2 ) ) | → | active#( add( mark( X1 ) , mark( X2 ) ) ) |
active#( first( s( X ) , cons( Y , Z ) ) ) | → | mark#( cons( Y , first( X , Z ) ) ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( dbl( X ) ) | → | active#( dbl( mark( X ) ) ) |
mark#( dbl( X ) ) | → | mark#( X ) |
mark#( first( X1 , X2 ) ) | → | active#( first( mark( X1 ) , mark( X2 ) ) ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | x1 | |
[dbl (x1) ] | = | 2 x1 + 2 | |
[first (x1, x2) ] | = | 3 x1 + 2 x2 + 1 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | x1 | |
[0] | = | 0 | |
[nil] | = | 1 | |
[cons (x1, x2) ] | = | x1 + 3 | |
[terms (x1) ] | = | x1 + 3 | |
[recip (x1) ] | = | x1 | |
[sqr (x1) ] | = | x1 | |
[add (x1, x2) ] | = | x1 + x2 + 2 | |
[s (x1) ] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( terms( X ) ) | → | active#( terms( mark( X ) ) ) |
active#( terms( N ) ) | → | mark#( cons( recip( sqr( N ) ) , terms( s( N ) ) ) ) |
active#( sqr( s( X ) ) ) | → | mark#( s( add( sqr( X ) , dbl( X ) ) ) ) |
mark#( recip( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | active#( sqr( mark( X ) ) ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | active#( add( mark( X1 ) , mark( X2 ) ) ) |
mark#( dbl( X ) ) | → | active#( dbl( mark( X ) ) ) |
mark#( first( X1 , X2 ) ) | → | active#( first( mark( X1 ) , mark( X2 ) ) ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 0 | |
[active# (x1) ] | = | x1 | |
[dbl (x1) ] | = | 1 | |
[first (x1, x2) ] | = | 1 | |
[active (x1) ] | = | 0 | |
[mark# (x1) ] | = | 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 1 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 1 | |
[add (x1, x2) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( terms( X ) ) | → | active#( terms( mark( X ) ) ) |
active#( terms( N ) ) | → | mark#( cons( recip( sqr( N ) ) , terms( s( N ) ) ) ) |
active#( sqr( s( X ) ) ) | → | mark#( s( add( sqr( X ) , dbl( X ) ) ) ) |
mark#( recip( X ) ) | → | mark#( X ) |
mark#( sqr( X ) ) | → | active#( sqr( mark( X ) ) ) |
mark#( sqr( X ) ) | → | mark#( X ) |
mark#( dbl( X ) ) | → | active#( dbl( mark( X ) ) ) |
mark#( first( X1 , X2 ) ) | → | active#( first( mark( X1 ) , mark( X2 ) ) ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 2 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | 3 x1 + 2 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 2 | |
[recip (x1) ] | = | 2 x1 | |
[sqr (x1) ] | = | 2 x1 + 2 | |
[add (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( recip( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 | |
[dbl (x1) ] | = | 2 x1 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[recip (x1) ] | = | 2 x1 + 1 | |
[terms (x1) ] | = | 0 | |
[sqr (x1) ] | = | 2 | |
[add (x1, x2) ] | = | 2 x1 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
terms#( active( X ) ) | → | terms#( X ) |
terms#( mark( X ) ) | → | terms#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 2 x1 + 2 | |
[first (x1, x2) ] | = | x1 + 1 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[terms# (x1) ] | = | x1 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 2 | |
[recip (x1) ] | = | 2 | |
[sqr (x1) ] | = | 1 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
terms#( active( X ) ) | → | terms#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[terms# (x1) ] | = | x1 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 0 | |
[add (x1, x2) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
cons#( X1 , mark( X2 ) ) | → | cons#( X1 , X2 ) |
cons#( mark( X1 ) , X2 ) | → | cons#( X1 , X2 ) |
cons#( active( X1 ) , X2 ) | → | cons#( X1 , X2 ) |
cons#( X1 , active( X2 ) ) | → | cons#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | x1 + 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 | |
[cons# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 3 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
recip#( active( X ) ) | → | recip#( X ) |
recip#( mark( X ) ) | → | recip#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 2 x1 + 2 | |
[first (x1, x2) ] | = | x1 + 1 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 2 | |
[recip (x1) ] | = | 2 | |
[sqr (x1) ] | = | 1 | |
[recip# (x1) ] | = | x1 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
recip#( active( X ) ) | → | recip#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 0 | |
[recip# (x1) ] | = | x1 | |
[add (x1, x2) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
sqr#( active( X ) ) | → | sqr#( X ) |
sqr#( mark( X ) ) | → | sqr#( X ) |
Linear polynomial interpretation over the naturals
[sqr# (x1) ] | = | x1 | |
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 2 x1 + 2 | |
[first (x1, x2) ] | = | x1 + 1 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 2 | |
[recip (x1) ] | = | 2 | |
[sqr (x1) ] | = | 1 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
sqr#( active( X ) ) | → | sqr#( X ) |
Linear polynomial interpretation over the naturals
[sqr# (x1) ] | = | x1 | |
[mark (x1) ] | = | 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 0 | |
[add (x1, x2) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
s#( active( X ) ) | → | s#( X ) |
s#( mark( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 2 x1 + 2 | |
[first (x1, x2) ] | = | x1 + 1 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[s# (x1) ] | = | x1 | |
[terms (x1) ] | = | 2 | |
[recip (x1) ] | = | 2 | |
[sqr (x1) ] | = | 1 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
s#( active( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[s# (x1) ] | = | x1 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 0 | |
[add (x1, x2) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
add#( X1 , mark( X2 ) ) | → | add#( X1 , X2 ) |
add#( mark( X1 ) , X2 ) | → | add#( X1 , X2 ) |
add#( active( X1 ) , X2 ) | → | add#( X1 , X2 ) |
add#( X1 , active( X2 ) ) | → | add#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | x1 + 1 | |
[0] | = | 0 | |
[add# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 3 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
dbl#( active( X ) ) | → | dbl#( X ) |
dbl#( mark( X ) ) | → | dbl#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 2 x1 + 2 | |
[first (x1, x2) ] | = | x1 + 1 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 2 | |
[recip (x1) ] | = | 2 | |
[sqr (x1) ] | = | 1 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[dbl# (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
dbl#( active( X ) ) | → | dbl#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 0 | |
[add (x1, x2) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[dbl# (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
first#( X1 , mark( X2 ) ) | → | first#( X1 , X2 ) |
first#( mark( X1 ) , X2 ) | → | first#( X1 , X2 ) |
first#( active( X1 ) , X2 ) | → | first#( X1 , X2 ) |
first#( X1 , active( X2 ) ) | → | first#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 2 x1 + 1 | |
[dbl (x1) ] | = | 0 | |
[first (x1, x2) ] | = | 0 | |
[active (x1) ] | = | x1 + 1 | |
[first# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 | |
[terms (x1) ] | = | 0 | |
[recip (x1) ] | = | 0 | |
[sqr (x1) ] | = | 3 | |
[add (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.