active#(
terms(
N
)
)
|
→ |
mark#(
cons(
recip(
sqr(
N
)
)
,
terms(
s(
N
)
)
)
)
|
active#(
terms(
N
)
)
|
→ |
cons#(
recip(
sqr(
N
)
)
,
terms(
s(
N
)
)
)
|
active#(
terms(
N
)
)
|
→ |
recip#(
sqr(
N
)
)
|
active#(
terms(
N
)
)
|
→ |
sqr#(
N
)
|
active#(
terms(
N
)
)
|
→ |
terms#(
s(
N
)
)
|
active#(
terms(
N
)
)
|
→ |
s#(
N
)
|
active#(
sqr(
0
)
)
|
→ |
mark#(
0
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
mark#(
s(
add(
sqr(
X
)
,
dbl(
X
)
)
)
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
s#(
add(
sqr(
X
)
,
dbl(
X
)
)
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
add#(
sqr(
X
)
,
dbl(
X
)
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
sqr#(
X
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
dbl#(
X
)
|
active#(
dbl(
0
)
)
|
→ |
mark#(
0
)
|
active#(
dbl(
s(
X
)
)
)
|
→ |
mark#(
s(
s(
dbl(
X
)
)
)
)
|
active#(
dbl(
s(
X
)
)
)
|
→ |
s#(
s(
dbl(
X
)
)
)
|
active#(
dbl(
s(
X
)
)
)
|
→ |
s#(
dbl(
X
)
)
|
active#(
dbl(
s(
X
)
)
)
|
→ |
dbl#(
X
)
|
active#(
add(
0
,
X
)
)
|
→ |
mark#(
X
)
|
active#(
add(
s(
X
)
,
Y
)
)
|
→ |
mark#(
s(
add(
X
,
Y
)
)
)
|
active#(
add(
s(
X
)
,
Y
)
)
|
→ |
s#(
add(
X
,
Y
)
)
|
active#(
add(
s(
X
)
,
Y
)
)
|
→ |
add#(
X
,
Y
)
|
active#(
first(
0
,
X
)
)
|
→ |
mark#(
nil
)
|
active#(
first(
s(
X
)
,
cons(
Y
,
Z
)
)
)
|
→ |
mark#(
cons(
Y
,
first(
X
,
Z
)
)
)
|
active#(
first(
s(
X
)
,
cons(
Y
,
Z
)
)
)
|
→ |
cons#(
Y
,
first(
X
,
Z
)
)
|
active#(
first(
s(
X
)
,
cons(
Y
,
Z
)
)
)
|
→ |
first#(
X
,
Z
)
|
mark#(
terms(
X
)
)
|
→ |
active#(
terms(
mark(
X
)
)
)
|
mark#(
terms(
X
)
)
|
→ |
terms#(
mark(
X
)
)
|
mark#(
terms(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
active#(
cons(
mark(
X1
)
,
X2
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
cons#(
mark(
X1
)
,
X2
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
recip(
X
)
)
|
→ |
active#(
recip(
mark(
X
)
)
)
|
mark#(
recip(
X
)
)
|
→ |
recip#(
mark(
X
)
)
|
mark#(
recip(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
active#(
sqr(
mark(
X
)
)
)
|
mark#(
sqr(
X
)
)
|
→ |
sqr#(
mark(
X
)
)
|
mark#(
sqr(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
X
)
)
|
mark#(
s(
X
)
)
|
→ |
s#(
X
)
|
mark#(
0
)
|
→ |
active#(
0
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
active#(
add(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
add#(
mark(
X1
)
,
mark(
X2
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
dbl(
X
)
)
|
→ |
active#(
dbl(
mark(
X
)
)
)
|
mark#(
dbl(
X
)
)
|
→ |
dbl#(
mark(
X
)
)
|
mark#(
dbl(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
active#(
first(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
first#(
mark(
X1
)
,
mark(
X2
)
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
nil
)
|
→ |
active#(
nil
)
|
terms#(
mark(
X
)
)
|
→ |
terms#(
X
)
|
terms#(
active(
X
)
)
|
→ |
terms#(
X
)
|
cons#(
mark(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
mark(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
active(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
active(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
recip#(
mark(
X
)
)
|
→ |
recip#(
X
)
|
recip#(
active(
X
)
)
|
→ |
recip#(
X
)
|
sqr#(
mark(
X
)
)
|
→ |
sqr#(
X
)
|
sqr#(
active(
X
)
)
|
→ |
sqr#(
X
)
|
s#(
mark(
X
)
)
|
→ |
s#(
X
)
|
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
add#(
mark(
X1
)
,
X2
)
|
→ |
add#(
X1
,
X2
)
|
add#(
X1
,
mark(
X2
)
)
|
→ |
add#(
X1
,
X2
)
|
add#(
active(
X1
)
,
X2
)
|
→ |
add#(
X1
,
X2
)
|
add#(
X1
,
active(
X2
)
)
|
→ |
add#(
X1
,
X2
)
|
dbl#(
mark(
X
)
)
|
→ |
dbl#(
X
)
|
dbl#(
active(
X
)
)
|
→ |
dbl#(
X
)
|
first#(
mark(
X1
)
,
X2
)
|
→ |
first#(
X1
,
X2
)
|
first#(
X1
,
mark(
X2
)
)
|
→ |
first#(
X1
,
X2
)
|
first#(
active(
X1
)
,
X2
)
|
→ |
first#(
X1
,
X2
)
|
first#(
X1
,
active(
X2
)
)
|
→ |
first#(
X1
,
X2
)
|
The dependency pairs are split into 9 component(s).
-
The
1st
component contains the
pair(s)
mark#(
terms(
X
)
)
|
→ |
active#(
terms(
mark(
X
)
)
)
|
active#(
terms(
N
)
)
|
→ |
mark#(
cons(
recip(
sqr(
N
)
)
,
terms(
s(
N
)
)
)
)
|
mark#(
terms(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
active#(
cons(
mark(
X1
)
,
X2
)
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
mark#(
s(
add(
sqr(
X
)
,
dbl(
X
)
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
recip(
X
)
)
|
→ |
active#(
recip(
mark(
X
)
)
)
|
active#(
dbl(
s(
X
)
)
)
|
→ |
mark#(
s(
s(
dbl(
X
)
)
)
)
|
mark#(
recip(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
active#(
sqr(
mark(
X
)
)
)
|
active#(
add(
0
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
X
)
)
|
active#(
add(
s(
X
)
,
Y
)
)
|
→ |
mark#(
s(
add(
X
,
Y
)
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
active#(
add(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
first(
s(
X
)
,
cons(
Y
,
Z
)
)
)
|
→ |
mark#(
cons(
Y
,
first(
X
,
Z
)
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
dbl(
X
)
)
|
→ |
active#(
dbl(
mark(
X
)
)
)
|
mark#(
dbl(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
active#(
first(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
x1
|
[dbl
(x1)
]
|
= |
1
|
[first
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
1
|
[terms
(x1)
]
|
= |
1
|
[recip
(x1)
]
|
= |
1
|
[sqr
(x1)
]
|
= |
1
|
[add
(x1, x2)
]
|
= |
1
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
terms(
X
)
)
|
→ |
active#(
terms(
mark(
X
)
)
)
|
active#(
terms(
N
)
)
|
→ |
mark#(
cons(
recip(
sqr(
N
)
)
,
terms(
s(
N
)
)
)
)
|
mark#(
terms(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
active#(
cons(
mark(
X1
)
,
X2
)
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
mark#(
s(
add(
sqr(
X
)
,
dbl(
X
)
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
recip(
X
)
)
|
→ |
active#(
recip(
mark(
X
)
)
)
|
active#(
dbl(
s(
X
)
)
)
|
→ |
mark#(
s(
s(
dbl(
X
)
)
)
)
|
mark#(
recip(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
active#(
sqr(
mark(
X
)
)
)
|
active#(
add(
0
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
mark#(
X
)
|
active#(
add(
s(
X
)
,
Y
)
)
|
→ |
mark#(
s(
add(
X
,
Y
)
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
active#(
add(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
first(
s(
X
)
,
cons(
Y
,
Z
)
)
)
|
→ |
mark#(
cons(
Y
,
first(
X
,
Z
)
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
dbl(
X
)
)
|
→ |
active#(
dbl(
mark(
X
)
)
)
|
mark#(
dbl(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
active#(
first(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
x1
|
[dbl
(x1)
]
|
= |
1
|
[first
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
1
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
1
|
[add
(x1, x2)
]
|
= |
1
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
terms(
X
)
)
|
→ |
active#(
terms(
mark(
X
)
)
)
|
active#(
terms(
N
)
)
|
→ |
mark#(
cons(
recip(
sqr(
N
)
)
,
terms(
s(
N
)
)
)
)
|
mark#(
terms(
X
)
)
|
→ |
mark#(
X
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
mark#(
s(
add(
sqr(
X
)
,
dbl(
X
)
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
active#(
dbl(
s(
X
)
)
)
|
→ |
mark#(
s(
s(
dbl(
X
)
)
)
)
|
mark#(
recip(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
active#(
sqr(
mark(
X
)
)
)
|
active#(
add(
0
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
mark#(
X
)
|
active#(
add(
s(
X
)
,
Y
)
)
|
→ |
mark#(
s(
add(
X
,
Y
)
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
active#(
add(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
first(
s(
X
)
,
cons(
Y
,
Z
)
)
)
|
→ |
mark#(
cons(
Y
,
first(
X
,
Z
)
)
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
dbl(
X
)
)
|
→ |
active#(
dbl(
mark(
X
)
)
)
|
mark#(
dbl(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
active#(
first(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
x1
|
[dbl
(x1)
]
|
= |
2
x1
+
2
|
[first
(x1, x2)
]
|
= |
3
x1 +
2
x2
+
1
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
x1
|
[0]
|
= |
0
|
[nil]
|
= |
1
|
[cons
(x1, x2)
]
|
= |
x1
+
3
|
[terms
(x1)
]
|
= |
x1
+
3
|
[recip
(x1)
]
|
= |
x1
|
[sqr
(x1)
]
|
= |
x1
|
[add
(x1, x2)
]
|
= |
x1 + x2
+
2
|
[s
(x1)
]
|
= |
3
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
terms(
X
)
)
|
→ |
active#(
terms(
mark(
X
)
)
)
|
active#(
terms(
N
)
)
|
→ |
mark#(
cons(
recip(
sqr(
N
)
)
,
terms(
s(
N
)
)
)
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
mark#(
s(
add(
sqr(
X
)
,
dbl(
X
)
)
)
)
|
mark#(
recip(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
active#(
sqr(
mark(
X
)
)
)
|
mark#(
sqr(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
add(
X1
,
X2
)
)
|
→ |
active#(
add(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
dbl(
X
)
)
|
→ |
active#(
dbl(
mark(
X
)
)
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
active#(
first(
mark(
X1
)
,
mark(
X2
)
)
)
|
1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
x1
|
[dbl
(x1)
]
|
= |
1
|
[first
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
1
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
1
|
[add
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
terms(
X
)
)
|
→ |
active#(
terms(
mark(
X
)
)
)
|
active#(
terms(
N
)
)
|
→ |
mark#(
cons(
recip(
sqr(
N
)
)
,
terms(
s(
N
)
)
)
)
|
active#(
sqr(
s(
X
)
)
)
|
→ |
mark#(
s(
add(
sqr(
X
)
,
dbl(
X
)
)
)
)
|
mark#(
recip(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
sqr(
X
)
)
|
→ |
active#(
sqr(
mark(
X
)
)
)
|
mark#(
sqr(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
dbl(
X
)
)
|
→ |
active#(
dbl(
mark(
X
)
)
)
|
mark#(
first(
X1
,
X2
)
)
|
→ |
active#(
first(
mark(
X1
)
,
mark(
X2
)
)
)
|
1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
2
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
3
x1
+
2
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
2
|
[recip
(x1)
]
|
= |
2
x1
|
[sqr
(x1)
]
|
= |
2
x1
+
2
|
[add
(x1, x2)
]
|
= |
x1
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
recip(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
|
[dbl
(x1)
]
|
= |
2
x1
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
2
x1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[recip
(x1)
]
|
= |
2
x1
+
1
|
[terms
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
2
|
[add
(x1, x2)
]
|
= |
2
x1
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.1.1.1.1.1.1.1: P is empty
All dependency pairs have been removed.
-
The
2nd
component contains the
pair(s)
terms#(
active(
X
)
)
|
→ |
terms#(
X
)
|
terms#(
mark(
X
)
)
|
→ |
terms#(
X
)
|
1.1.2: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
2
x1
+
2
|
[first
(x1, x2)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[0]
|
= |
0
|
[terms#
(x1)
]
|
= |
x1
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
2
|
[recip
(x1)
]
|
= |
2
|
[sqr
(x1)
]
|
= |
1
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
terms#(
active(
X
)
)
|
→ |
terms#(
X
)
|
1.1.2.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[0]
|
= |
0
|
[terms#
(x1)
]
|
= |
x1
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
0
|
[add
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.2.1.1: P is empty
All dependency pairs have been removed.
-
The
3rd
component contains the
pair(s)
cons#(
X1
,
mark(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
mark(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
active(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
active(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
1.1.3: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
x1
+
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
2
x1
|
[cons#
(x1, x2)
]
|
= |
3
x1 +
3
x2
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
3
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.3.1: P is empty
All dependency pairs have been removed.
-
The
4th
component contains the
pair(s)
recip#(
active(
X
)
)
|
→ |
recip#(
X
)
|
recip#(
mark(
X
)
)
|
→ |
recip#(
X
)
|
1.1.4: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
2
x1
+
2
|
[first
(x1, x2)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
2
|
[recip
(x1)
]
|
= |
2
|
[sqr
(x1)
]
|
= |
1
|
[recip#
(x1)
]
|
= |
x1
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
recip#(
active(
X
)
)
|
→ |
recip#(
X
)
|
1.1.4.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
0
|
[recip#
(x1)
]
|
= |
x1
|
[add
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.4.1.1: P is empty
All dependency pairs have been removed.
-
The
5th
component contains the
pair(s)
sqr#(
active(
X
)
)
|
→ |
sqr#(
X
)
|
sqr#(
mark(
X
)
)
|
→ |
sqr#(
X
)
|
1.1.5: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[sqr#
(x1)
]
|
= |
x1
|
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
2
x1
+
2
|
[first
(x1, x2)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
2
|
[recip
(x1)
]
|
= |
2
|
[sqr
(x1)
]
|
= |
1
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
sqr#(
active(
X
)
)
|
→ |
sqr#(
X
)
|
1.1.5.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[sqr#
(x1)
]
|
= |
x1
|
[mark
(x1)
]
|
= |
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
0
|
[add
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.5.1.1: P is empty
All dependency pairs have been removed.
-
The
6th
component contains the
pair(s)
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
s#(
mark(
X
)
)
|
→ |
s#(
X
)
|
1.1.6: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
2
x1
+
2
|
[first
(x1, x2)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[s#
(x1)
]
|
= |
x1
|
[terms
(x1)
]
|
= |
2
|
[recip
(x1)
]
|
= |
2
|
[sqr
(x1)
]
|
= |
1
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
1.1.6.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[s#
(x1)
]
|
= |
x1
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
0
|
[add
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.6.1.1: P is empty
All dependency pairs have been removed.
-
The
7th
component contains the
pair(s)
add#(
X1
,
mark(
X2
)
)
|
→ |
add#(
X1
,
X2
)
|
add#(
mark(
X1
)
,
X2
)
|
→ |
add#(
X1
,
X2
)
|
add#(
active(
X1
)
,
X2
)
|
→ |
add#(
X1
,
X2
)
|
add#(
X1
,
active(
X2
)
)
|
→ |
add#(
X1
,
X2
)
|
1.1.7: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
x1
+
1
|
[0]
|
= |
0
|
[add#
(x1, x2)
]
|
= |
3
x1 +
3
x2
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
2
x1
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
3
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.7.1: P is empty
All dependency pairs have been removed.
-
The
8th
component contains the
pair(s)
dbl#(
active(
X
)
)
|
→ |
dbl#(
X
)
|
dbl#(
mark(
X
)
)
|
→ |
dbl#(
X
)
|
1.1.8: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
2
x1
+
2
|
[first
(x1, x2)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
2
|
[recip
(x1)
]
|
= |
2
|
[sqr
(x1)
]
|
= |
1
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[dbl#
(x1)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
dbl#(
active(
X
)
)
|
→ |
dbl#(
X
)
|
1.1.8.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
0
|
[add
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[dbl#
(x1)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.8.1.1: P is empty
All dependency pairs have been removed.
-
The
9th
component contains the
pair(s)
first#(
X1
,
mark(
X2
)
)
|
→ |
first#(
X1
,
X2
)
|
first#(
mark(
X1
)
,
X2
)
|
→ |
first#(
X1
,
X2
)
|
first#(
active(
X1
)
,
X2
)
|
→ |
first#(
X1
,
X2
)
|
first#(
X1
,
active(
X2
)
)
|
→ |
first#(
X1
,
X2
)
|
1.1.9: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
2
x1
+
1
|
[dbl
(x1)
]
|
= |
0
|
[first
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
x1
+
1
|
[first#
(x1, x2)
]
|
= |
3
x1 +
3
x2
|
[0]
|
= |
0
|
[nil]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
2
x1
|
[terms
(x1)
]
|
= |
0
|
[recip
(x1)
]
|
= |
0
|
[sqr
(x1)
]
|
= |
3
|
[add
(x1, x2)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.9.1: P is empty
All dependency pairs have been removed.