fst#( s( X ) , cons( Y , Z ) ) | → | activate#( X ) |
fst#( s( X ) , cons( Y , Z ) ) | → | activate#( Z ) |
add#( s( X ) , Y ) | → | s#( n__add( activate( X ) , Y ) ) |
add#( s( X ) , Y ) | → | activate#( X ) |
len#( cons( X , Z ) ) | → | s#( n__len( activate( Z ) ) ) |
len#( cons( X , Z ) ) | → | activate#( Z ) |
activate#( n__fst( X1 , X2 ) ) | → | fst#( activate( X1 ) , activate( X2 ) ) |
activate#( n__fst( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__fst( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__from( X ) ) | → | from#( activate( X ) ) |
activate#( n__from( X ) ) | → | activate#( X ) |
activate#( n__s( X ) ) | → | s#( X ) |
activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__len( X ) ) | → | len#( activate( X ) ) |
activate#( n__len( X ) ) | → | activate#( X ) |
The dependency pairs are split into 1 component(s).
activate#( n__fst( X1 , X2 ) ) | → | fst#( activate( X1 ) , activate( X2 ) ) |
fst#( s( X ) , cons( Y , Z ) ) | → | activate#( X ) |
activate#( n__fst( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__fst( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__from( X ) ) | → | activate#( X ) |
activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
add#( s( X ) , Y ) | → | activate#( X ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__len( X ) ) | → | len#( activate( X ) ) |
len#( cons( X , Z ) ) | → | activate#( Z ) |
activate#( n__len( X ) ) | → | activate#( X ) |
fst#( s( X ) , cons( Y , Z ) ) | → | activate#( Z ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | x1 + 1 | |
[fst (x1, x2) ] | = | x1 + x2 | |
[n__from (x1) ] | = | x1 + 1 | |
[n__s (x1) ] | = | x1 | |
[0] | = | 0 | |
[add# (x1, x2) ] | = | x1 + x2 | |
[len# (x1) ] | = | x1 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | x1 | |
[activate (x1) ] | = | x1 | |
[len (x1) ] | = | x1 | |
[n__add (x1, x2) ] | = | x1 + x2 | |
[activate# (x1) ] | = | x1 | |
[fst# (x1, x2) ] | = | x1 + x2 | |
[n__fst (x1, x2) ] | = | x1 + x2 | |
[add (x1, x2) ] | = | x1 + x2 | |
[s (x1) ] | = | x1 | |
[n__len (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
activate#( n__fst( X1 , X2 ) ) | → | fst#( activate( X1 ) , activate( X2 ) ) |
fst#( s( X ) , cons( Y , Z ) ) | → | activate#( X ) |
activate#( n__fst( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__fst( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
add#( s( X ) , Y ) | → | activate#( X ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__len( X ) ) | → | len#( activate( X ) ) |
len#( cons( X , Z ) ) | → | activate#( Z ) |
activate#( n__len( X ) ) | → | activate#( X ) |
fst#( s( X ) , cons( Y , Z ) ) | → | activate#( Z ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | 0 | |
[fst (x1, x2) ] | = | x1 + x2 + 2 | |
[n__from (x1) ] | = | 0 | |
[n__s (x1) ] | = | x1 | |
[0] | = | 3 | |
[add# (x1, x2) ] | = | 2 x1 | |
[len# (x1) ] | = | 2 x1 | |
[nil] | = | 2 | |
[cons (x1, x2) ] | = | x1 | |
[activate (x1) ] | = | x1 | |
[len (x1) ] | = | 2 x1 | |
[n__add (x1, x2) ] | = | x1 + x2 | |
[activate# (x1) ] | = | 2 x1 | |
[fst# (x1, x2) ] | = | 2 x1 + 2 x2 + 3 | |
[n__fst (x1, x2) ] | = | x1 + x2 + 2 | |
[add (x1, x2) ] | = | x1 + x2 | |
[s (x1) ] | = | x1 | |
[n__len (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
add#( s( X ) , Y ) | → | activate#( X ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__len( X ) ) | → | len#( activate( X ) ) |
len#( cons( X , Z ) ) | → | activate#( Z ) |
activate#( n__len( X ) ) | → | activate#( X ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | 1 | |
[fst (x1, x2) ] | = | 1 | |
[n__from (x1) ] | = | 1 | |
[n__s (x1) ] | = | x1 | |
[0] | = | 0 | |
[add# (x1, x2) ] | = | x1 + x2 | |
[len# (x1) ] | = | x1 | |
[nil] | = | 1 | |
[cons (x1, x2) ] | = | x1 | |
[activate (x1) ] | = | x1 | |
[len (x1) ] | = | x1 + 2 | |
[n__add (x1, x2) ] | = | x1 + x2 | |
[activate# (x1) ] | = | x1 | |
[n__fst (x1, x2) ] | = | 1 | |
[add (x1, x2) ] | = | x1 + x2 | |
[s (x1) ] | = | x1 | |
[n__len (x1) ] | = | x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
add#( s( X ) , Y ) | → | activate#( X ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
len#( cons( X , Z ) ) | → | activate#( Z ) |
The dependency pairs are split into 1 component(s).
add#( s( X ) , Y ) | → | activate#( X ) |
activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | 1 | |
[fst (x1, x2) ] | = | 0 | |
[n__from (x1) ] | = | 1 | |
[n__s (x1) ] | = | x1 | |
[0] | = | 0 | |
[add# (x1, x2) ] | = | 2 x1 + 2 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[activate (x1) ] | = | x1 | |
[len (x1) ] | = | 0 | |
[n__add (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[activate# (x1) ] | = | 2 x1 + 2 | |
[n__fst (x1, x2) ] | = | 0 | |
[add (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[s (x1) ] | = | x1 | |
[n__len (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
add#( s( X ) , Y ) | → | activate#( X ) |
The dependency pairs are split into 0 component(s).