Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | activate : symb | add : symb | cons : symb | from : symb | fst : symb | len : symb | n__add : symb | n__from : symb | n__fst : symb | n__len : symb | n__s : symb | nil : symb | s : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.activate => 1 | M.add => 2 | M.cons => 2 | M.from => 1 | M.fst => 2 | M.len => 1 | M.n__add => 2 | M.n__from => 1 | M.n__fst => 2 | M.n__len => 1 | M.n__s => 1 | M.nil => 0 | M.s => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition activate x1 := F0 M.activate (Vcons x1 Vnil). Definition add x2 x1 := F0 M.add (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition from x1 := F0 M.from (Vcons x1 Vnil). Definition fst x2 x1 := F0 M.fst (Vcons x2 (Vcons x1 Vnil)). Definition len x1 := F0 M.len (Vcons x1 Vnil). Definition n__add x2 x1 := F0 M.n__add (Vcons x2 (Vcons x1 Vnil)). Definition n__from x1 := F0 M.n__from (Vcons x1 Vnil). Definition n__fst x2 x1 := F0 M.n__fst (Vcons x2 (Vcons x1 Vnil)). Definition n__len x1 := F0 M.n__len (Vcons x1 Vnil). Definition n__s x1 := F0 M.n__s (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition s x1 := F0 M.s (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.fst S0._0_1 (V0 0)) S0.nil :: R0 (S0.fst (S0.s (V0 0)) (S0.cons (V0 1) (V0 2))) (S0.cons (V0 1) (S0.n__fst (S0.activate (V0 0)) (S0.activate (V0 2)))) :: R0 (S0.from (V0 0)) (S0.cons (V0 0) (S0.n__from (S0.n__s (V0 0)))) :: R0 (S0.add S0._0_1 (V0 0)) (V0 0) :: R0 (S0.add (S0.s (V0 0)) (V0 1)) (S0.s (S0.n__add (S0.activate (V0 0)) (V0 1))) :: R0 (S0.len S0.nil) S0._0_1 :: R0 (S0.len (S0.cons (V0 0) (V0 1))) (S0.s (S0.n__len (S0.activate (V0 1)))) :: R0 (S0.fst (V0 0) (V0 1)) (S0.n__fst (V0 0) (V0 1)) :: R0 (S0.from (V0 0)) (S0.n__from (V0 0)) :: R0 (S0.s (V0 0)) (S0.n__s (V0 0)) :: R0 (S0.add (V0 0) (V0 1)) (S0.n__add (V0 0) (V0 1)) :: R0 (S0.len (V0 0)) (S0.n__len (V0 0)) :: R0 (S0.activate (S0.n__fst (V0 0) (V0 1))) (S0.fst (S0.activate (V0 0)) (S0.activate (V0 1))) :: R0 (S0.activate (S0.n__from (V0 0))) (S0.from (S0.activate (V0 0))) :: R0 (S0.activate (S0.n__s (V0 0))) (S0.s (V0 0)) :: R0 (S0.activate (S0.n__add (V0 0) (V0 1))) (S0.add (S0.activate (V0 0)) (S0.activate (V0 1))) :: R0 (S0.activate (S0.n__len (V0 0))) (S0.len (S0.activate (V0 0))) :: R0 (S0.activate (V0 0)) (V0 0) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hactivate x1 := F1 (hd_symb s1_p M.activate) (Vcons x1 Vnil). Definition activate x1 := F1 (int_symb s1_p M.activate) (Vcons x1 Vnil). Definition hadd x2 x1 := F1 (hd_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition add x2 x1 := F1 (int_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hfrom x1 := F1 (hd_symb s1_p M.from) (Vcons x1 Vnil). Definition from x1 := F1 (int_symb s1_p M.from) (Vcons x1 Vnil). Definition hfst x2 x1 := F1 (hd_symb s1_p M.fst) (Vcons x2 (Vcons x1 Vnil)). Definition fst x2 x1 := F1 (int_symb s1_p M.fst) (Vcons x2 (Vcons x1 Vnil)). Definition hlen x1 := F1 (hd_symb s1_p M.len) (Vcons x1 Vnil). Definition len x1 := F1 (int_symb s1_p M.len) (Vcons x1 Vnil). Definition hn__add x2 x1 := F1 (hd_symb s1_p M.n__add) (Vcons x2 (Vcons x1 Vnil)). Definition n__add x2 x1 := F1 (int_symb s1_p M.n__add) (Vcons x2 (Vcons x1 Vnil)). Definition hn__from x1 := F1 (hd_symb s1_p M.n__from) (Vcons x1 Vnil). Definition n__from x1 := F1 (int_symb s1_p M.n__from) (Vcons x1 Vnil). Definition hn__fst x2 x1 := F1 (hd_symb s1_p M.n__fst) (Vcons x2 (Vcons x1 Vnil)). Definition n__fst x2 x1 := F1 (int_symb s1_p M.n__fst) (Vcons x2 (Vcons x1 Vnil)). Definition hn__len x1 := F1 (hd_symb s1_p M.n__len) (Vcons x1 Vnil). Definition n__len x1 := F1 (int_symb s1_p M.n__len) (Vcons x1 Vnil). Definition hn__s x1 := F1 (hd_symb s1_p M.n__s) (Vcons x1 Vnil). Definition n__s x1 := F1 (int_symb s1_p M.n__s) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hactivate (S1.n__s (V1 0))) (S1.hs (V1 0)) :: nil) :: ( R1 (S1.hactivate (S1.n__from (V1 0))) (S1.hfrom (S1.activate (V1 0))) :: nil) :: ( R1 (S1.hlen (S1.cons (V1 0) (V1 1))) (S1.hs (S1.n__len (S1.activate (V1 1)))) :: nil) :: ( R1 (S1.hadd (S1.s (V1 0)) (V1 1)) (S1.hs (S1.n__add (S1.activate (V1 0)) (V1 1))) :: nil) :: ( R1 (S1.hactivate (S1.n__fst (V1 0) (V1 1))) (S1.hfst (S1.activate (V1 0)) (S1.activate (V1 1))) :: R1 (S1.hfst (S1.s (V1 0)) (S1.cons (V1 1) (V1 2))) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__fst (V1 0) (V1 1))) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__fst (V1 0) (V1 1))) (S1.hactivate (V1 1)) :: R1 (S1.hactivate (S1.n__from (V1 0))) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__add (V1 0) (V1 1))) (S1.hadd (S1.activate (V1 0)) (S1.activate (V1 1))) :: R1 (S1.hadd (S1.s (V1 0)) (V1 1)) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__add (V1 0) (V1 1))) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__add (V1 0) (V1 1))) (S1.hactivate (V1 1)) :: R1 (S1.hactivate (S1.n__len (V1 0))) (S1.hlen (S1.activate (V1 0))) :: R1 (S1.hlen (S1.cons (V1 0) (V1 1))) (S1.hactivate (V1 1)) :: R1 (S1.hactivate (S1.n__len (V1 0))) (S1.hactivate (V1 0)) :: R1 (S1.hfst (S1.s (V1 0)) (S1.cons (V1 1) (V1 2))) (S1.hactivate (V1 2)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.fst) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.fst) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__fst) => nil | (int_symb M.n__fst) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.from) => nil | (int_symb M.from) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.n__from) => nil | (int_symb M.n__from) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.n__s) => nil | (int_symb M.n__s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__add) => nil | (int_symb M.n__add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.len) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.len) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.n__len) => nil | (int_symb M.n__len) => (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.fst) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.fst) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (3%Z, Vnil) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__fst) => nil | (int_symb M.n__fst) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.activate) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.from) => nil | (int_symb M.from) => nil | (hd_symb M.n__from) => nil | (int_symb M.n__from) => nil | (hd_symb M.n__s) => nil | (int_symb M.n__s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.add) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__add) => nil | (int_symb M.n__add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.len) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.len) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.n__len) => nil | (int_symb M.n__len) => (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.fst) => nil | (int_symb M.fst) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__fst) => nil | (int_symb M.n__fst) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.from) => nil | (int_symb M.from) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.n__from) => nil | (int_symb M.n__from) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.n__s) => nil | (int_symb M.n__s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__add) => nil | (int_symb M.n__add) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.len) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.len) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.n__len) => nil | (int_symb M.n__len) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hadd (S1.s (V1 0)) (V1 1)) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__add (V1 0) (V1 1))) (S1.hadd (S1.activate (V1 0)) (S1.activate (V1 1))) :: R1 (S1.hactivate (S1.n__add (V1 0) (V1 1))) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__add (V1 0) (V1 1))) (S1.hactivate (V1 1)) :: nil) :: ( R1 (S1.hlen (S1.cons (V1 0) (V1 1))) (S1.hactivate (V1 1)) :: nil) :: nil. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.fst) => nil | (int_symb M.fst) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => nil | (hd_symb M.n__fst) => nil | (int_symb M.n__fst) => nil | (hd_symb M.activate) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.from) => nil | (int_symb M.from) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.n__from) => nil | (int_symb M.n__from) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.n__s) => nil | (int_symb M.n__s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.add) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.add) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__add) => nil | (int_symb M.n__add) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.len) => nil | (int_symb M.len) => nil | (hd_symb M.n__len) => nil | (int_symb M.n__len) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* graph decomposition 3 *) Definition cs3 : list (list (@ATrs.rule s1)) := ( R1 (S1.hadd (S1.s (V1 0)) (V1 1)) (S1.hactivate (V1 0)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. left. co_scc. right. PI1.prove_termination. PI2.prove_termination. PI3.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. right. PI4.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs3; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. Qed.