Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | add : symb | cons : symb | from : symb | fst : symb | len : symb | nil : symb | s : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.add => 2 | M.cons => 1 | M.from => 1 | M.fst => 2 | M.len => 1 | M.nil => 0 | M.s => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition add x2 x1 := F0 M.add (Vcons x2 (Vcons x1 Vnil)). Definition cons x1 := F0 M.cons (Vcons x1 Vnil). Definition from x1 := F0 M.from (Vcons x1 Vnil). Definition fst x2 x1 := F0 M.fst (Vcons x2 (Vcons x1 Vnil)). Definition len x1 := F0 M.len (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition s := F0 M.s Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.fst S0._0_1 (V0 0)) S0.nil :: R0 (S0.fst S0.s (S0.cons (V0 0))) (S0.cons (V0 0)) :: R0 (S0.from (V0 0)) (S0.cons (V0 0)) :: R0 (S0.add S0._0_1 (V0 0)) (V0 0) :: R0 (S0.add S0.s (V0 0)) S0.s :: R0 (S0.len S0.nil) S0._0_1 :: R0 (S0.len (S0.cons (V0 0))) S0.s :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hadd x2 x1 := F1 (hd_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition add x2 x1 := F1 (int_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x1 := F1 (hd_symb s1_p M.cons) (Vcons x1 Vnil). Definition cons x1 := F1 (int_symb s1_p M.cons) (Vcons x1 Vnil). Definition hfrom x1 := F1 (hd_symb s1_p M.from) (Vcons x1 Vnil). Definition from x1 := F1 (int_symb s1_p M.from) (Vcons x1 Vnil). Definition hfst x2 x1 := F1 (hd_symb s1_p M.fst) (Vcons x2 (Vcons x1 Vnil)). Definition fst x2 x1 := F1 (int_symb s1_p M.fst) (Vcons x2 (Vcons x1 Vnil)). Definition hlen x1 := F1 (hd_symb s1_p M.len) (Vcons x1 Vnil). Definition len x1 := F1 (int_symb s1_p M.len) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hs := F1 (hd_symb s1_p M.s) Vnil. Definition s := F1 (int_symb s1_p M.s) Vnil. End S1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. termination_trivial. Qed.