a__app#( nil , YS ) | → | mark#( YS ) |
a__app#( cons( X , XS ) , YS ) | → | mark#( X ) |
a__from#( X ) | → | mark#( X ) |
a__zWadr#( cons( X , XS ) , cons( Y , YS ) ) | → | a__app#( mark( Y ) , cons( mark( X ) , nil ) ) |
a__zWadr#( cons( X , XS ) , cons( Y , YS ) ) | → | mark#( Y ) |
a__zWadr#( cons( X , XS ) , cons( Y , YS ) ) | → | mark#( X ) |
mark#( app( X1 , X2 ) ) | → | a__app#( mark( X1 ) , mark( X2 ) ) |
mark#( app( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( app( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( from( X ) ) | → | a__from#( mark( X ) ) |
mark#( from( X ) ) | → | mark#( X ) |
mark#( zWadr( X1 , X2 ) ) | → | a__zWadr#( mark( X1 ) , mark( X2 ) ) |
mark#( zWadr( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( zWadr( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( prefix( X ) ) | → | a__prefix#( mark( X ) ) |
mark#( prefix( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
mark#( app( X1 , X2 ) ) | → | a__app#( mark( X1 ) , mark( X2 ) ) |
a__app#( nil , YS ) | → | mark#( YS ) |
mark#( app( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( app( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( from( X ) ) | → | a__from#( mark( X ) ) |
a__from#( X ) | → | mark#( X ) |
mark#( from( X ) ) | → | mark#( X ) |
mark#( zWadr( X1 , X2 ) ) | → | a__zWadr#( mark( X1 ) , mark( X2 ) ) |
a__zWadr#( cons( X , XS ) , cons( Y , YS ) ) | → | a__app#( mark( Y ) , cons( mark( X ) , nil ) ) |
a__app#( cons( X , XS ) , YS ) | → | mark#( X ) |
mark#( zWadr( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( zWadr( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( prefix( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
a__zWadr#( cons( X , XS ) , cons( Y , YS ) ) | → | mark#( Y ) |
a__zWadr#( cons( X , XS ) , cons( Y , YS ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | 2 x1 | |
[a__app (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[a__zWadr (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[mark (x1) ] | = | x1 | |
[a__prefix (x1) ] | = | 3 x1 + 3 | |
[a__app# (x1, x2) ] | = | 2 x1 + 2 x2 | |
[mark# (x1) ] | = | 2 x1 | |
[nil] | = | 0 | |
[zWadr (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[cons (x1, x2) ] | = | x1 | |
[app (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[a__from (x1) ] | = | 2 x1 | |
[s (x1) ] | = | 2 x1 + 3 | |
[a__zWadr# (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[a__from# (x1) ] | = | 2 x1 | |
[prefix (x1) ] | = | 3 x1 + 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__app#( nil , YS ) | → | mark#( YS ) |
mark#( from( X ) ) | → | a__from#( mark( X ) ) |
a__from#( X ) | → | mark#( X ) |
mark#( from( X ) ) | → | mark#( X ) |
a__app#( cons( X , XS ) , YS ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
The dependency pairs are split into 1 component(s).
a__from#( X ) | → | mark#( X ) |
mark#( from( X ) ) | → | a__from#( mark( X ) ) |
mark#( from( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | x1 + 1 | |
[a__app (x1, x2) ] | = | 2 x1 + 2 x2 | |
[mark (x1) ] | = | x1 | |
[a__zWadr (x1, x2) ] | = | 2 x1 + 2 x2 | |
[a__prefix (x1) ] | = | 1 | |
[mark# (x1) ] | = | x1 | |
[nil] | = | 1 | |
[zWadr (x1, x2) ] | = | 2 x1 + 2 x2 | |
[cons (x1, x2) ] | = | x1 | |
[app (x1, x2) ] | = | 2 x1 + 2 x2 | |
[a__from (x1) ] | = | x1 + 1 | |
[a__from# (x1) ] | = | x1 | |
[s (x1) ] | = | 0 | |
[prefix (x1) ] | = | 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__from#( X ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
The dependency pairs are split into 1 component(s).
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[a__app (x1, x2) ] | = | x1 + x2 | |
[from (x1) ] | = | 2 x1 + 1 | |
[mark (x1) ] | = | x1 | |
[a__zWadr (x1, x2) ] | = | 2 x1 + 2 x2 | |
[a__prefix (x1) ] | = | 2 | |
[mark# (x1) ] | = | 2 x1 | |
[nil] | = | 0 | |
[zWadr (x1, x2) ] | = | 2 x1 + 2 x2 | |
[cons (x1, x2) ] | = | x1 + 1 | |
[app (x1, x2) ] | = | x1 + x2 | |
[a__from (x1) ] | = | 2 x1 + 1 | |
[s (x1) ] | = | 0 | |
[prefix (x1) ] | = | 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.