Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | a__app : symb | a__from : symb | a__prefix : symb | a__zWadr : symb | app : symb | cons : symb | from : symb | mark : symb | nil : symb | prefix : symb | s : symb | zWadr : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.a__app => 2 | M.a__from => 1 | M.a__prefix => 1 | M.a__zWadr => 2 | M.app => 2 | M.cons => 2 | M.from => 1 | M.mark => 1 | M.nil => 0 | M.prefix => 1 | M.s => 1 | M.zWadr => 2 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition a__app x2 x1 := F0 M.a__app (Vcons x2 (Vcons x1 Vnil)). Definition a__from x1 := F0 M.a__from (Vcons x1 Vnil). Definition a__prefix x1 := F0 M.a__prefix (Vcons x1 Vnil). Definition a__zWadr x2 x1 := F0 M.a__zWadr (Vcons x2 (Vcons x1 Vnil)). Definition app x2 x1 := F0 M.app (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition from x1 := F0 M.from (Vcons x1 Vnil). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition prefix x1 := F0 M.prefix (Vcons x1 Vnil). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition zWadr x2 x1 := F0 M.zWadr (Vcons x2 (Vcons x1 Vnil)). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.a__app S0.nil (V0 0)) (S0.mark (V0 0)) :: R0 (S0.a__app (S0.cons (V0 0) (V0 1)) (V0 2)) (S0.cons (S0.mark (V0 0)) (S0.app (V0 1) (V0 2))) :: R0 (S0.a__from (V0 0)) (S0.cons (S0.mark (V0 0)) (S0.from (S0.s (V0 0)))) :: R0 (S0.a__zWadr S0.nil (V0 0)) S0.nil :: R0 (S0.a__zWadr (V0 0) S0.nil) S0.nil :: R0 (S0.a__zWadr (S0.cons (V0 0) (V0 1)) (S0.cons (V0 2) (V0 3))) (S0.cons (S0.a__app (S0.mark (V0 2)) (S0.cons (S0.mark (V0 0)) S0.nil)) (S0.zWadr (V0 1) (V0 3))) :: R0 (S0.a__prefix (V0 0)) (S0.cons S0.nil (S0.zWadr (V0 0) (S0.prefix (V0 0)))) :: R0 (S0.mark (S0.app (V0 0) (V0 1))) (S0.a__app (S0.mark (V0 0)) (S0.mark (V0 1))) :: R0 (S0.mark (S0.from (V0 0))) (S0.a__from (S0.mark (V0 0))) :: R0 (S0.mark (S0.zWadr (V0 0) (V0 1))) (S0.a__zWadr (S0.mark (V0 0)) (S0.mark (V0 1))) :: R0 (S0.mark (S0.prefix (V0 0))) (S0.a__prefix (S0.mark (V0 0))) :: R0 (S0.mark S0.nil) S0.nil :: R0 (S0.mark (S0.cons (V0 0) (V0 1))) (S0.cons (S0.mark (V0 0)) (V0 1)) :: R0 (S0.mark (S0.s (V0 0))) (S0.s (S0.mark (V0 0))) :: R0 (S0.a__app (V0 0) (V0 1)) (S0.app (V0 0) (V0 1)) :: R0 (S0.a__from (V0 0)) (S0.from (V0 0)) :: R0 (S0.a__zWadr (V0 0) (V0 1)) (S0.zWadr (V0 0) (V0 1)) :: R0 (S0.a__prefix (V0 0)) (S0.prefix (V0 0)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition ha__app x2 x1 := F1 (hd_symb s1_p M.a__app) (Vcons x2 (Vcons x1 Vnil)). Definition a__app x2 x1 := F1 (int_symb s1_p M.a__app) (Vcons x2 (Vcons x1 Vnil)). Definition ha__from x1 := F1 (hd_symb s1_p M.a__from) (Vcons x1 Vnil). Definition a__from x1 := F1 (int_symb s1_p M.a__from) (Vcons x1 Vnil). Definition ha__prefix x1 := F1 (hd_symb s1_p M.a__prefix) (Vcons x1 Vnil). Definition a__prefix x1 := F1 (int_symb s1_p M.a__prefix) (Vcons x1 Vnil). Definition ha__zWadr x2 x1 := F1 (hd_symb s1_p M.a__zWadr) (Vcons x2 (Vcons x1 Vnil)). Definition a__zWadr x2 x1 := F1 (int_symb s1_p M.a__zWadr) (Vcons x2 (Vcons x1 Vnil)). Definition happ x2 x1 := F1 (hd_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition app x2 x1 := F1 (int_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hfrom x1 := F1 (hd_symb s1_p M.from) (Vcons x1 Vnil). Definition from x1 := F1 (int_symb s1_p M.from) (Vcons x1 Vnil). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hprefix x1 := F1 (hd_symb s1_p M.prefix) (Vcons x1 Vnil). Definition prefix x1 := F1 (int_symb s1_p M.prefix) (Vcons x1 Vnil). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition hzWadr x2 x1 := F1 (hd_symb s1_p M.zWadr) (Vcons x2 (Vcons x1 Vnil)). Definition zWadr x2 x1 := F1 (int_symb s1_p M.zWadr) (Vcons x2 (Vcons x1 Vnil)). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.prefix (V1 0))) (S1.ha__prefix (S1.mark (V1 0))) :: nil) :: ( R1 (S1.hmark (S1.app (V1 0) (V1 1))) (S1.ha__app (S1.mark (V1 0)) (S1.mark (V1 1))) :: R1 (S1.ha__app (S1.nil) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.app (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.app (V1 0) (V1 1))) (S1.hmark (V1 1)) :: R1 (S1.hmark (S1.from (V1 0))) (S1.ha__from (S1.mark (V1 0))) :: R1 (S1.ha__from (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.from (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.zWadr (V1 0) (V1 1))) (S1.ha__zWadr (S1.mark (V1 0)) (S1.mark (V1 1))) :: R1 (S1.ha__zWadr (S1.cons (V1 0) (V1 1)) (S1.cons (V1 2) (V1 3))) (S1.ha__app (S1.mark (V1 2)) (S1.cons (S1.mark (V1 0)) (S1.nil))) :: R1 (S1.ha__app (S1.cons (V1 0) (V1 1)) (V1 2)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.zWadr (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.zWadr (V1 0) (V1 1))) (S1.hmark (V1 1)) :: R1 (S1.hmark (S1.prefix (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.cons (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.s (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.ha__zWadr (S1.cons (V1 0) (V1 1)) (S1.cons (V1 2) (V1 3))) (S1.hmark (V1 2)) :: R1 (S1.ha__zWadr (S1.cons (V1 0) (V1 1)) (S1.cons (V1 2) (V1 3))) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__app) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__app) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.app) => nil | (int_symb M.app) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__from) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__from) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.from) => nil | (int_symb M.from) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__zWadr) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__zWadr) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.zWadr) => nil | (int_symb M.zWadr) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__prefix) => nil | (int_symb M.a__prefix) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.prefix) => nil | (int_symb M.prefix) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.ha__from (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.from (V1 0))) (S1.ha__from (S1.mark (V1 0))) :: R1 (S1.hmark (S1.from (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.cons (V1 0) (V1 1))) (S1.hmark (V1 0)) :: nil) :: ( R1 (S1.ha__app (S1.cons (V1 0) (V1 1)) (V1 2)) (S1.hmark (V1 0)) :: nil) :: ( R1 (S1.ha__app (S1.nil) (V1 0)) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__app) => nil | (int_symb M.a__app) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.app) => nil | (int_symb M.app) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__from) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__from) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.from) => nil | (int_symb M.from) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.a__zWadr) => nil | (int_symb M.a__zWadr) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.zWadr) => nil | (int_symb M.zWadr) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__prefix) => nil | (int_symb M.a__prefix) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.prefix) => nil | (int_symb M.prefix) => (1%Z, (Vcons 0 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* graph decomposition 3 *) Definition cs3 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.cons (V1 0) (V1 1))) (S1.hmark (V1 0)) :: nil) :: ( R1 (S1.ha__from (V1 0)) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__app) => nil | (int_symb M.a__app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__from) => nil | (int_symb M.a__from) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.from) => nil | (int_symb M.from) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.a__zWadr) => nil | (int_symb M.a__zWadr) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.zWadr) => nil | (int_symb M.zWadr) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__prefix) => nil | (int_symb M.a__prefix) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.prefix) => nil | (int_symb M.prefix) => (2%Z, (Vcons 0 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. right. PI2.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs3; subst D; subst R. dpg_unif_N_correct. right. PI3.prove_termination. termination_trivial. left. co_scc. left. co_scc. left. co_scc. Qed.