Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | app : symb | cons : symb | from : symb | nil : symb | prefix : symb | zWadr : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.app => 2 | M.cons => 1 | M.from => 1 | M.nil => 0 | M.prefix => 1 | M.zWadr => 2 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition app x2 x1 := F0 M.app (Vcons x2 (Vcons x1 Vnil)). Definition cons x1 := F0 M.cons (Vcons x1 Vnil). Definition from x1 := F0 M.from (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition prefix x1 := F0 M.prefix (Vcons x1 Vnil). Definition zWadr x2 x1 := F0 M.zWadr (Vcons x2 (Vcons x1 Vnil)). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.app S0.nil (V0 0)) (V0 0) :: R0 (S0.app (S0.cons (V0 0)) (V0 1)) (S0.cons (V0 0)) :: R0 (S0.from (V0 0)) (S0.cons (V0 0)) :: R0 (S0.zWadr S0.nil (V0 0)) S0.nil :: R0 (S0.zWadr (V0 0) S0.nil) S0.nil :: R0 (S0.zWadr (S0.cons (V0 0)) (S0.cons (V0 1))) (S0.cons (S0.app (V0 1) (S0.cons (V0 0)))) :: R0 (S0.prefix (V0 0)) (S0.cons S0.nil) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition happ x2 x1 := F1 (hd_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition app x2 x1 := F1 (int_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x1 := F1 (hd_symb s1_p M.cons) (Vcons x1 Vnil). Definition cons x1 := F1 (int_symb s1_p M.cons) (Vcons x1 Vnil). Definition hfrom x1 := F1 (hd_symb s1_p M.from) (Vcons x1 Vnil). Definition from x1 := F1 (int_symb s1_p M.from) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hprefix x1 := F1 (hd_symb s1_p M.prefix) (Vcons x1 Vnil). Definition prefix x1 := F1 (int_symb s1_p M.prefix) (Vcons x1 Vnil). Definition hzWadr x2 x1 := F1 (hd_symb s1_p M.zWadr) (Vcons x2 (Vcons x1 Vnil)). Definition zWadr x2 x1 := F1 (int_symb s1_p M.zWadr) (Vcons x2 (Vcons x1 Vnil)). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hzWadr (S1.cons (V1 0)) (S1.cons (V1 1))) (S1.happ (V1 1) (S1.cons (V1 0))) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.