active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
cons#(
X
,
app(
XS
,
YS
)
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
app#(
XS
,
YS
)
|
active#(
from(
X
)
)
|
→ |
mark#(
cons(
X
,
from(
s(
X
)
)
)
)
|
active#(
from(
X
)
)
|
→ |
cons#(
X
,
from(
s(
X
)
)
)
|
active#(
from(
X
)
)
|
→ |
from#(
s(
X
)
)
|
active#(
from(
X
)
)
|
→ |
s#(
X
)
|
active#(
zWadr(
nil
,
YS
)
)
|
→ |
mark#(
nil
)
|
active#(
zWadr(
XS
,
nil
)
)
|
→ |
mark#(
nil
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
mark#(
cons(
app(
Y
,
cons(
X
,
nil
)
)
,
zWadr(
XS
,
YS
)
)
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
cons#(
app(
Y
,
cons(
X
,
nil
)
)
,
zWadr(
XS
,
YS
)
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
app#(
Y
,
cons(
X
,
nil
)
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
cons#(
X
,
nil
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
zWadr#(
XS
,
YS
)
|
active#(
prefix(
L
)
)
|
→ |
mark#(
cons(
nil
,
zWadr(
L
,
prefix(
L
)
)
)
)
|
active#(
prefix(
L
)
)
|
→ |
cons#(
nil
,
zWadr(
L
,
prefix(
L
)
)
)
|
active#(
prefix(
L
)
)
|
→ |
zWadr#(
L
,
prefix(
L
)
)
|
active#(
prefix(
L
)
)
|
→ |
prefix#(
L
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
app#(
mark(
X1
)
,
mark(
X2
)
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
nil
)
|
→ |
active#(
nil
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
active#(
cons(
mark(
X1
)
,
X2
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
cons#(
mark(
X1
)
,
X2
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
from(
X
)
)
|
→ |
active#(
from(
mark(
X
)
)
)
|
mark#(
from(
X
)
)
|
→ |
from#(
mark(
X
)
)
|
mark#(
from(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
mark(
X
)
)
)
|
mark#(
s(
X
)
)
|
→ |
s#(
mark(
X
)
)
|
mark#(
s(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
active#(
zWadr(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
zWadr#(
mark(
X1
)
,
mark(
X2
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
prefix(
X
)
)
|
→ |
active#(
prefix(
mark(
X
)
)
)
|
mark#(
prefix(
X
)
)
|
→ |
prefix#(
mark(
X
)
)
|
mark#(
prefix(
X
)
)
|
→ |
mark#(
X
)
|
app#(
mark(
X1
)
,
X2
)
|
→ |
app#(
X1
,
X2
)
|
app#(
X1
,
mark(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
app#(
active(
X1
)
,
X2
)
|
→ |
app#(
X1
,
X2
)
|
app#(
X1
,
active(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
cons#(
mark(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
mark(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
active(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
active(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
from#(
mark(
X
)
)
|
→ |
from#(
X
)
|
from#(
active(
X
)
)
|
→ |
from#(
X
)
|
s#(
mark(
X
)
)
|
→ |
s#(
X
)
|
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
zWadr#(
mark(
X1
)
,
X2
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
X1
,
mark(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
active(
X1
)
,
X2
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
X1
,
active(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
prefix#(
mark(
X
)
)
|
→ |
prefix#(
X
)
|
prefix#(
active(
X
)
)
|
→ |
prefix#(
X
)
|
The dependency pairs are split into 7 component(s).
-
The
1st
component contains the
pair(s)
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
active#(
cons(
mark(
X1
)
,
X2
)
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
from(
X
)
)
|
→ |
active#(
from(
mark(
X
)
)
)
|
active#(
from(
X
)
)
|
→ |
mark#(
cons(
X
,
from(
s(
X
)
)
)
)
|
mark#(
from(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
mark(
X
)
)
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
mark#(
cons(
app(
Y
,
cons(
X
,
nil
)
)
,
zWadr(
XS
,
YS
)
)
)
|
mark#(
s(
X
)
)
|
→ |
mark#(
X
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
active#(
zWadr(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
prefix(
L
)
)
|
→ |
mark#(
cons(
nil
,
zWadr(
L
,
prefix(
L
)
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
prefix(
X
)
)
|
→ |
active#(
prefix(
mark(
X
)
)
)
|
mark#(
prefix(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
3
|
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
2
x1 +
2
x2
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
x1
|
[s
(x1)
]
|
= |
2
x1
+
3
|
[prefix
(x1)
]
|
= |
x1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
2
x1 +
2
x2
|
[cons
(x1, x2)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
active#(
cons(
mark(
X1
)
,
X2
)
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
from(
X
)
)
|
→ |
active#(
from(
mark(
X
)
)
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
mark(
X
)
)
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
mark#(
cons(
app(
Y
,
cons(
X
,
nil
)
)
,
zWadr(
XS
,
YS
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
active#(
zWadr(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
prefix(
L
)
)
|
→ |
mark#(
cons(
nil
,
zWadr(
L
,
prefix(
L
)
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
prefix(
X
)
)
|
→ |
active#(
prefix(
mark(
X
)
)
)
|
mark#(
prefix(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
2
x1
|
[app
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
2
|
[s
(x1)
]
|
= |
1
|
[prefix
(x1)
]
|
= |
1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
1
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
mark(
X
)
)
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
mark#(
cons(
app(
Y
,
cons(
X
,
nil
)
)
,
zWadr(
XS
,
YS
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
active#(
zWadr(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
prefix(
L
)
)
|
→ |
mark#(
cons(
nil
,
zWadr(
L
,
prefix(
L
)
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
prefix(
X
)
)
|
→ |
active#(
prefix(
mark(
X
)
)
)
|
mark#(
prefix(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
1
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
1
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
active#(
zWadr(
cons(
X
,
XS
)
,
cons(
Y
,
YS
)
)
)
|
→ |
mark#(
cons(
app(
Y
,
cons(
X
,
nil
)
)
,
zWadr(
XS
,
YS
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
active#(
zWadr(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
prefix(
L
)
)
|
→ |
mark#(
cons(
nil
,
zWadr(
L
,
prefix(
L
)
)
)
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
prefix(
X
)
)
|
→ |
active#(
prefix(
mark(
X
)
)
)
|
mark#(
prefix(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
2
x1
|
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
2
x1
+
2
|
[app
(x1, x2)
]
|
= |
x1 +
2
x2
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
2
x1
+
2
|
[s
(x1)
]
|
= |
1
|
[prefix
(x1)
]
|
= |
2
x1
+
2
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
2
x1 + x2
+
3
|
[cons
(x1, x2)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
zWadr(
X1
,
X2
)
)
|
→ |
active#(
zWadr(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
prefix(
X
)
)
|
→ |
active#(
prefix(
mark(
X
)
)
)
|
1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
x1
+
1
|
[app
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
2
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
prefix(
X
)
)
|
→ |
active#(
prefix(
mark(
X
)
)
)
|
1.1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
1
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
app(
X1
,
X2
)
)
|
→ |
active#(
app(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
app(
nil
,
YS
)
)
|
→ |
mark#(
YS
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
app(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
active#(
app(
cons(
X
,
XS
)
,
YS
)
)
|
→ |
mark#(
cons(
X
,
app(
XS
,
YS
)
)
)
|
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
1.1.1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
2
|
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
2
x1 +
3
x2
+
2
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
2
x1
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
3
x1 +
2
x2
+
2
|
[cons
(x1, x2)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
cons(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
1.1.1.1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
2
x1
+
2
|
[mark
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
2
x1 + x2
+
1
|
[mark#
(x1)
]
|
= |
2
x1
|
[s
(x1)
]
|
= |
2
x1
|
[prefix
(x1)
]
|
= |
x1
+
2
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
2
x1 +
2
x2
|
[cons
(x1, x2)
]
|
= |
x1
+
2
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.1.1.1.1.1.1.1.1.1: P is empty
All dependency pairs have been removed.
-
The
2nd
component contains the
pair(s)
app#(
X1
,
mark(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
app#(
mark(
X1
)
,
X2
)
|
→ |
app#(
X1
,
X2
)
|
app#(
active(
X1
)
,
X2
)
|
→ |
app#(
X1
,
X2
)
|
app#(
X1
,
active(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
1.1.2: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
3
|
[mark
(x1)
]
|
= |
2
x1
+
3
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
2
x1
+
3
|
[s
(x1)
]
|
= |
2
|
[app#
(x1, x2)
]
|
= |
2
x1
|
[prefix
(x1)
]
|
= |
3
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
x1
+
3
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
app#(
X1
,
mark(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
app#(
active(
X1
)
,
X2
)
|
→ |
app#(
X1
,
X2
)
|
app#(
X1
,
active(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
1.1.2.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
2
|
[active
(x1)
]
|
= |
x1
+
2
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[app#
(x1, x2)
]
|
= |
2
x1
|
[prefix
(x1)
]
|
= |
0
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
app#(
X1
,
mark(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
app#(
X1
,
active(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
1.1.2.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
3
|
[mark
(x1)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[app#
(x1, x2)
]
|
= |
2
x1
|
[prefix
(x1)
]
|
= |
1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
2
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
app#(
X1
,
active(
X2
)
)
|
→ |
app#(
X1
,
X2
)
|
1.1.2.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
2
|
[active
(x1)
]
|
= |
2
x1
+
2
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[app#
(x1, x2)
]
|
= |
x1
|
[prefix
(x1)
]
|
= |
0
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.2.1.1.1.1: P is empty
All dependency pairs have been removed.
-
The
3rd
component contains the
pair(s)
cons#(
X1
,
mark(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
mark(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
active(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
active(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
1.1.3: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
3
|
[mark
(x1)
]
|
= |
2
x1
+
3
|
[cons#
(x1, x2)
]
|
= |
2
x1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
2
x1
+
3
|
[s
(x1)
]
|
= |
2
|
[prefix
(x1)
]
|
= |
3
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
x1
+
3
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
cons#(
X1
,
mark(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
active(
X1
)
,
X2
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
active(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
1.1.3.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
2
|
[cons#
(x1, x2)
]
|
= |
2
x1
|
[active
(x1)
]
|
= |
x1
+
2
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
cons#(
X1
,
mark(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
cons#(
X1
,
active(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
1.1.3.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
3
|
[mark
(x1)
]
|
= |
x1
+
1
|
[cons#
(x1, x2)
]
|
= |
2
x1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
2
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
cons#(
X1
,
active(
X2
)
)
|
→ |
cons#(
X1
,
X2
)
|
1.1.3.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
2
|
[cons#
(x1, x2)
]
|
= |
x1
|
[active
(x1)
]
|
= |
2
x1
+
2
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.3.1.1.1.1: P is empty
All dependency pairs have been removed.
-
The
4th
component contains the
pair(s)
from#(
active(
X
)
)
|
→ |
from#(
X
)
|
from#(
mark(
X
)
)
|
→ |
from#(
X
)
|
1.1.4: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
2
|
[mark
(x1)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
2
|
[from#
(x1)
]
|
= |
x1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
x1
+
1
|
[cons
(x1, x2)
]
|
= |
1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
from#(
active(
X
)
)
|
→ |
from#(
X
)
|
1.1.4.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
1
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[from#
(x1)
]
|
= |
2
x1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.4.1.1: P is empty
All dependency pairs have been removed.
-
The
5th
component contains the
pair(s)
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
s#(
mark(
X
)
)
|
→ |
s#(
X
)
|
1.1.5: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
2
|
[mark
(x1)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
2
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
x1
+
1
|
[cons
(x1, x2)
]
|
= |
1
|
[s#
(x1)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
1.1.5.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
1
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[s#
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.5.1.1: P is empty
All dependency pairs have been removed.
-
The
6th
component contains the
pair(s)
zWadr#(
X1
,
mark(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
mark(
X1
)
,
X2
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
active(
X1
)
,
X2
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
X1
,
active(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
1.1.6: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
3
|
[mark
(x1)
]
|
= |
2
x1
+
3
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
2
x1
+
3
|
[s
(x1)
]
|
= |
2
|
[prefix
(x1)
]
|
= |
3
|
[zWadr#
(x1, x2)
]
|
= |
2
x1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
x1
+
3
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
zWadr#(
X1
,
mark(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
active(
X1
)
,
X2
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
X1
,
active(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
1.1.6.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
2
|
[active
(x1)
]
|
= |
x1
+
2
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[zWadr#
(x1, x2)
]
|
= |
2
x1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
zWadr#(
X1
,
mark(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
zWadr#(
X1
,
active(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
1.1.6.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
x1
+
3
|
[mark
(x1)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
1
|
[zWadr#
(x1, x2)
]
|
= |
2
x1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
2
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
zWadr#(
X1
,
active(
X2
)
)
|
→ |
zWadr#(
X1
,
X2
)
|
1.1.6.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
2
|
[active
(x1)
]
|
= |
2
x1
+
2
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[zWadr#
(x1, x2)
]
|
= |
x1
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.6.1.1.1.1: P is empty
All dependency pairs have been removed.
-
The
7th
component contains the
pair(s)
prefix#(
active(
X
)
)
|
→ |
prefix#(
X
)
|
prefix#(
mark(
X
)
)
|
→ |
prefix#(
X
)
|
1.1.7: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
2
|
[mark
(x1)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[app
(x1, x2)
]
|
= |
x1
+
2
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
2
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
x1
+
1
|
[cons
(x1, x2)
]
|
= |
1
|
[prefix#
(x1)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
prefix#(
active(
X
)
)
|
→ |
prefix#(
X
)
|
1.1.7.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[from
(x1)
]
|
= |
0
|
[mark
(x1)
]
|
= |
1
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[app
(x1, x2)
]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[prefix
(x1)
]
|
= |
0
|
[nil]
|
= |
0
|
[zWadr
(x1, x2)
]
|
= |
0
|
[cons
(x1, x2)
]
|
= |
0
|
[prefix#
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.7.1.1: P is empty
All dependency pairs have been removed.