a__minus#( s( X ) , s( Y ) ) | → | a__minus#( X , Y ) |
a__geq#( s( X ) , s( Y ) ) | → | a__geq#( X , Y ) |
a__div#( s( X ) , s( Y ) ) | → | a__if#( a__geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) |
a__div#( s( X ) , s( Y ) ) | → | a__geq#( X , Y ) |
a__if#( true , X , Y ) | → | mark#( X ) |
a__if#( false , X , Y ) | → | mark#( Y ) |
mark#( minus( X1 , X2 ) ) | → | a__minus#( X1 , X2 ) |
mark#( geq( X1 , X2 ) ) | → | a__geq#( X1 , X2 ) |
mark#( div( X1 , X2 ) ) | → | a__div#( mark( X1 ) , X2 ) |
mark#( div( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( if( X1 , X2 , X3 ) ) | → | a__if#( mark( X1 ) , X2 , X3 ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 3 component(s).
mark#( div( X1 , X2 ) ) | → | a__div#( mark( X1 ) , X2 ) |
a__div#( s( X ) , s( Y ) ) | → | a__if#( a__geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) |
a__if#( true , X , Y ) | → | mark#( X ) |
mark#( div( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( if( X1 , X2 , X3 ) ) | → | a__if#( mark( X1 ) , X2 , X3 ) |
a__if#( false , X , Y ) | → | mark#( Y ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[mark (x1) ] | = | 2 x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 + x3 + 2 | |
[a__div (x1, x2) ] | = | 3 x1 + 3 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[a__minus (x1, x2) ] | = | 0 | |
[a__geq (x1, x2) ] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 3 x1 + 2 | |
[true] | = | 0 | |
[a__if# (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[false] | = | 0 | |
[a__if (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 x3 + 2 | |
[s (x1) ] | = | x1 + 3 | |
[a__div# (x1, x2) ] | = | 3 x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__div#( s( X ) , s( Y ) ) | → | a__if#( a__geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) |
a__if#( true , X , Y ) | → | mark#( X ) |
a__if#( false , X , Y ) | → | mark#( Y ) |
The dependency pairs are split into 0 component(s).
a__minus#( s( X ) , s( Y ) ) | → | a__minus#( X , Y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | x1 | |
[a__div (x1, x2) ] | = | 2 x1 | |
[0] | = | 0 | |
[a__minus (x1, x2) ] | = | 0 | |
[a__minus# (x1, x2) ] | = | x1 | |
[a__geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 2 x1 | |
[geq (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[false] | = | 0 | |
[a__if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[s (x1) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
a__geq#( s( X ) , s( Y ) ) | → | a__geq#( X , Y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[a__geq# (x1, x2) ] | = | x1 | |
[mark (x1) ] | = | x1 | |
[a__div (x1, x2) ] | = | 2 x1 | |
[0] | = | 0 | |
[a__minus (x1, x2) ] | = | 0 | |
[a__geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 2 x1 | |
[geq (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[false] | = | 0 | |
[a__if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[s (x1) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.