minus#( n__0 , Y ) | → | 0# |
minus#( n__s( X ) , n__s( Y ) ) | → | minus#( activate( X ) , activate( Y ) ) |
minus#( n__s( X ) , n__s( Y ) ) | → | activate#( X ) |
minus#( n__s( X ) , n__s( Y ) ) | → | activate#( Y ) |
geq#( n__s( X ) , n__s( Y ) ) | → | geq#( activate( X ) , activate( Y ) ) |
geq#( n__s( X ) , n__s( Y ) ) | → | activate#( X ) |
geq#( n__s( X ) , n__s( Y ) ) | → | activate#( Y ) |
div#( 0 , n__s( Y ) ) | → | 0# |
div#( s( X ) , n__s( Y ) ) | → | if#( geq( X , activate( Y ) ) , n__s( div( minus( X , activate( Y ) ) , n__s( activate( Y ) ) ) ) , n__0 ) |
div#( s( X ) , n__s( Y ) ) | → | geq#( X , activate( Y ) ) |
div#( s( X ) , n__s( Y ) ) | → | activate#( Y ) |
div#( s( X ) , n__s( Y ) ) | → | div#( minus( X , activate( Y ) ) , n__s( activate( Y ) ) ) |
div#( s( X ) , n__s( Y ) ) | → | minus#( X , activate( Y ) ) |
div#( s( X ) , n__s( Y ) ) | → | activate#( Y ) |
div#( s( X ) , n__s( Y ) ) | → | activate#( Y ) |
if#( true , X , Y ) | → | activate#( X ) |
if#( false , X , Y ) | → | activate#( Y ) |
activate#( n__0 ) | → | 0# |
activate#( n__s( X ) ) | → | s#( X ) |
The dependency pairs are split into 3 component(s).
div#( s( X ) , n__s( Y ) ) | → | div#( minus( X , activate( Y ) ) , n__s( activate( Y ) ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 1 | |
[true] | = | 3 | |
[if (x1, x2, x3) ] | = | 3 x1 + 3 x2 + 3 x3 | |
[n__0] | = | 0 | |
[false] | = | 3 | |
[n__s (x1) ] | = | 2 | |
[s (x1) ] | = | 3 | |
[0] | = | 0 | |
[div# (x1, x2) ] | = | 2 x1 | |
[geq (x1, x2) ] | = | 3 | |
[div (x1, x2) ] | = | 3 x1 + 2 x2 + 2 | |
[activate (x1) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
minus#( n__s( X ) , n__s( Y ) ) | → | minus#( activate( X ) , activate( Y ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[n__0] | = | 0 | |
[false] | = | 0 | |
[n__s (x1) ] | = | 3 x1 + 2 | |
[0] | = | 0 | |
[s (x1) ] | = | 3 x1 + 3 | |
[minus# (x1, x2) ] | = | 3 x1 + x2 | |
[geq (x1, x2) ] | = | 3 x1 | |
[div (x1, x2) ] | = | 3 x1 + 1 | |
[activate (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
geq#( n__s( X ) , n__s( Y ) ) | → | geq#( activate( X ) , activate( Y ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[n__0] | = | 0 | |
[false] | = | 0 | |
[n__s (x1) ] | = | 3 x1 + 2 | |
[0] | = | 0 | |
[s (x1) ] | = | 3 x1 + 3 | |
[geq (x1, x2) ] | = | 3 x1 | |
[div (x1, x2) ] | = | 3 x1 + 1 | |
[activate (x1) ] | = | 2 x1 | |
[geq# (x1, x2) ] | = | 3 x1 + x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.