active#( minus( 0 , Y ) ) | → | mark#( 0 ) |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
active#( minus( s( X ) , s( Y ) ) ) | → | minus#( X , Y ) |
active#( geq( X , 0 ) ) | → | mark#( true ) |
active#( geq( 0 , s( Y ) ) ) | → | mark#( false ) |
active#( geq( s( X ) , s( Y ) ) ) | → | mark#( geq( X , Y ) ) |
active#( geq( s( X ) , s( Y ) ) ) | → | geq#( X , Y ) |
active#( div( 0 , s( Y ) ) ) | → | mark#( 0 ) |
active#( div( s( X ) , s( Y ) ) ) | → | mark#( if( geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) ) |
active#( div( s( X ) , s( Y ) ) ) | → | if#( geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) |
active#( div( s( X ) , s( Y ) ) ) | → | geq#( X , Y ) |
active#( div( s( X ) , s( Y ) ) ) | → | s#( div( minus( X , Y ) , s( Y ) ) ) |
active#( div( s( X ) , s( Y ) ) ) | → | div#( minus( X , Y ) , s( Y ) ) |
active#( div( s( X ) , s( Y ) ) ) | → | minus#( X , Y ) |
active#( div( s( X ) , s( Y ) ) ) | → | s#( Y ) |
active#( if( true , X , Y ) ) | → | mark#( X ) |
active#( if( false , X , Y ) ) | → | mark#( Y ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
mark#( minus( X1 , X2 ) ) | → | minus#( X1 , X2 ) |
mark#( 0 ) | → | active#( 0 ) |
mark#( s( X ) ) | → | active#( s( mark( X ) ) ) |
mark#( s( X ) ) | → | s#( mark( X ) ) |
mark#( s( X ) ) | → | mark#( X ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
mark#( geq( X1 , X2 ) ) | → | geq#( X1 , X2 ) |
mark#( true ) | → | active#( true ) |
mark#( false ) | → | active#( false ) |
mark#( div( X1 , X2 ) ) | → | active#( div( mark( X1 ) , X2 ) ) |
mark#( div( X1 , X2 ) ) | → | div#( mark( X1 ) , X2 ) |
mark#( div( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( if( X1 , X2 , X3 ) ) | → | active#( if( mark( X1 ) , X2 , X3 ) ) |
mark#( if( X1 , X2 , X3 ) ) | → | if#( mark( X1 ) , X2 , X3 ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
minus#( mark( X1 ) , X2 ) | → | minus#( X1 , X2 ) |
minus#( X1 , mark( X2 ) ) | → | minus#( X1 , X2 ) |
minus#( active( X1 ) , X2 ) | → | minus#( X1 , X2 ) |
minus#( X1 , active( X2 ) ) | → | minus#( X1 , X2 ) |
s#( mark( X ) ) | → | s#( X ) |
s#( active( X ) ) | → | s#( X ) |
geq#( mark( X1 ) , X2 ) | → | geq#( X1 , X2 ) |
geq#( X1 , mark( X2 ) ) | → | geq#( X1 , X2 ) |
geq#( active( X1 ) , X2 ) | → | geq#( X1 , X2 ) |
geq#( X1 , active( X2 ) ) | → | geq#( X1 , X2 ) |
div#( mark( X1 ) , X2 ) | → | div#( X1 , X2 ) |
div#( X1 , mark( X2 ) ) | → | div#( X1 , X2 ) |
div#( active( X1 ) , X2 ) | → | div#( X1 , X2 ) |
div#( X1 , active( X2 ) ) | → | div#( X1 , X2 ) |
if#( mark( X1 ) , X2 , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( X1 , mark( X2 ) , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( X1 , X2 , mark( X3 ) ) | → | if#( X1 , X2 , X3 ) |
if#( active( X1 ) , X2 , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( X1 , active( X2 ) , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( X1 , X2 , active( X3 ) ) | → | if#( X1 , X2 , X3 ) |
The dependency pairs are split into 6 component(s).
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
active#( geq( s( X ) , s( Y ) ) ) | → | mark#( geq( X , Y ) ) |
mark#( s( X ) ) | → | active#( s( mark( X ) ) ) |
active#( div( s( X ) , s( Y ) ) ) | → | mark#( if( geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
active#( if( true , X , Y ) ) | → | mark#( X ) |
mark#( div( X1 , X2 ) ) | → | active#( div( mark( X1 ) , X2 ) ) |
active#( if( false , X , Y ) ) | → | mark#( Y ) |
mark#( div( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( if( X1 , X2 , X3 ) ) | → | active#( if( mark( X1 ) , X2 , X3 ) ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 1 | |
[true] | = | 0 | |
[mark (x1) ] | = | 0 | |
[if (x1, x2, x3) ] | = | 1 | |
[active# (x1) ] | = | x1 | |
[false] | = | 0 | |
[active (x1) ] | = | 0 | |
[mark# (x1) ] | = | 1 | |
[s (x1) ] | = | 0 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 1 | |
[div (x1, x2) ] | = | 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
active#( geq( s( X ) , s( Y ) ) ) | → | mark#( geq( X , Y ) ) |
active#( div( s( X ) , s( Y ) ) ) | → | mark#( if( geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
active#( if( true , X , Y ) ) | → | mark#( X ) |
mark#( div( X1 , X2 ) ) | → | active#( div( mark( X1 ) , X2 ) ) |
active#( if( false , X , Y ) ) | → | mark#( Y ) |
mark#( div( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( if( X1 , X2 , X3 ) ) | → | active#( if( mark( X1 ) , X2 , X3 ) ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 + x3 | |
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | 2 x1 | |
[false] | = | 0 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[s (x1) ] | = | x1 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
active#( geq( s( X ) , s( Y ) ) ) | → | mark#( geq( X , Y ) ) |
active#( div( s( X ) , s( Y ) ) ) | → | mark#( if( geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
active#( if( true , X , Y ) ) | → | mark#( X ) |
mark#( div( X1 , X2 ) ) | → | active#( div( mark( X1 ) , X2 ) ) |
active#( if( false , X , Y ) ) | → | mark#( Y ) |
mark#( if( X1 , X2 , X3 ) ) | → | active#( if( mark( X1 ) , X2 , X3 ) ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + x2 + 2 x3 | |
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | x1 | |
[false] | = | 0 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
active#( geq( s( X ) , s( Y ) ) ) | → | mark#( geq( X , Y ) ) |
active#( div( s( X ) , s( Y ) ) ) | → | mark#( if( geq( X , Y ) , s( div( minus( X , Y ) , s( Y ) ) ) , 0 ) ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
active#( if( true , X , Y ) ) | → | mark#( X ) |
mark#( div( X1 , X2 ) ) | → | active#( div( mark( X1 ) , X2 ) ) |
active#( if( false , X , Y ) ) | → | mark#( Y ) |
mark#( if( X1 , X2 , X3 ) ) | → | active#( if( mark( X1 ) , X2 , X3 ) ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + x2 + x3 | |
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | x1 | |
[false] | = | 0 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | x1 | |
[s (x1) ] | = | 2 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
active#( geq( s( X ) , s( Y ) ) ) | → | mark#( geq( X , Y ) ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
active#( if( true , X , Y ) ) | → | mark#( X ) |
mark#( div( X1 , X2 ) ) | → | active#( div( mark( X1 ) , X2 ) ) |
active#( if( false , X , Y ) ) | → | mark#( Y ) |
mark#( if( X1 , X2 , X3 ) ) | → | active#( if( mark( X1 ) , X2 , X3 ) ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | 2 x1 + 3 x2 + 2 x3 + 3 | |
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | 2 x1 + 1 | |
[false] | = | 0 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | 3 x1 + 1 | |
[s (x1) ] | = | 0 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | x1 + 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
active#( geq( s( X ) , s( Y ) ) ) | → | mark#( geq( X , Y ) ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[mark (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 x3 | |
[active# (x1) ] | = | 2 x1 | |
[false] | = | 0 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 2 x1 | |
[div (x1, x2) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
mark#( geq( X1 , X2 ) ) | → | active#( geq( X1 , X2 ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 1 | |
[true] | = | 1 | |
[mark (x1) ] | = | 2 x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[active# (x1) ] | = | 2 x1 + 3 | |
[false] | = | 0 | |
[active (x1) ] | = | 2 x1 | |
[mark# (x1) ] | = | 3 x1 + 2 | |
[s (x1) ] | = | 0 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 2 | |
[div (x1, x2) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
mark#( minus( X1 , X2 ) ) | → | active#( minus( X1 , X2 ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | x1 | |
[true] | = | 0 | |
[mark (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[active# (x1) ] | = | 2 x1 | |
[false] | = | 0 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | x1 + 1 | |
[0] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 2 x1 + x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( minus( s( X ) , s( Y ) ) ) | → | mark#( minus( X , Y ) ) |
The dependency pairs are split into 0 component(s).
minus#( X1 , mark( X2 ) ) | → | minus#( X1 , X2 ) |
minus#( mark( X1 ) , X2 ) | → | minus#( X1 , X2 ) |
minus#( active( X1 ) , X2 ) | → | minus#( X1 , X2 ) |
minus#( X1 , active( X2 ) ) | → | minus#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[mark (x1) ] | = | 2 x1 + 3 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[false] | = | 0 | |
[active (x1) ] | = | 2 x1 + 3 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[minus# (x1, x2) ] | = | 3 x1 + x2 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
s#( active( X ) ) | → | s#( X ) |
s#( mark( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[mark (x1) ] | = | 2 x1 + 3 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[false] | = | 0 | |
[active (x1) ] | = | 2 x1 + 3 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | x1 | |
[s# (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
geq#( X1 , mark( X2 ) ) | → | geq#( X1 , X2 ) |
geq#( mark( X1 ) , X2 ) | → | geq#( X1 , X2 ) |
geq#( active( X1 ) , X2 ) | → | geq#( X1 , X2 ) |
geq#( X1 , active( X2 ) ) | → | geq#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[mark (x1) ] | = | 2 x1 + 3 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[false] | = | 0 | |
[active (x1) ] | = | 2 x1 + 3 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 0 | |
[geq# (x1, x2) ] | = | 3 x1 + x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
div#( X1 , mark( X2 ) ) | → | div#( X1 , X2 ) |
div#( mark( X1 ) , X2 ) | → | div#( X1 , X2 ) |
div#( active( X1 ) , X2 ) | → | div#( X1 , X2 ) |
div#( X1 , active( X2 ) ) | → | div#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[mark (x1) ] | = | 2 x1 + 3 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[false] | = | 0 | |
[active (x1) ] | = | 2 x1 + 3 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[div# (x1, x2) ] | = | 3 x1 + x2 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
if#( X1 , mark( X2 ) , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( mark( X1 ) , X2 , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( X1 , X2 , mark( X3 ) ) | → | if#( X1 , X2 , X3 ) |
if#( active( X1 ) , X2 , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( X1 , active( X2 ) , X3 ) | → | if#( X1 , X2 , X3 ) |
if#( X1 , X2 , active( X3 ) ) | → | if#( X1 , X2 , X3 ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[mark (x1) ] | = | 2 x1 + 3 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[false] | = | 0 | |
[if# (x1, x2, x3) ] | = | 3 x1 + x2 + 3 x3 | |
[active (x1) ] | = | 2 x1 + 3 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[geq (x1, x2) ] | = | 0 | |
[div (x1, x2) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.