after#( s( N ) , cons( X , XS ) ) | → | after#( N , activate( XS ) ) |
after#( s( N ) , cons( X , XS ) ) | → | activate#( XS ) |
activate#( n__from( X ) ) | → | from#( activate( X ) ) |
activate#( n__from( X ) ) | → | activate#( X ) |
activate#( n__s( X ) ) | → | s#( activate( X ) ) |
activate#( n__s( X ) ) | → | activate#( X ) |
The dependency pairs are split into 2 component(s).
after#( s( N ) , cons( X , XS ) ) | → | after#( N , activate( XS ) ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | 0 | |
[n__from (x1) ] | = | 0 | |
[n__s (x1) ] | = | 2 x1 + 1 | |
[after (x1, x2) ] | = | x1 + 2 x2 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[after# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[cons (x1, x2) ] | = | 2 x1 | |
[activate (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
activate#( n__s( X ) ) | → | activate#( X ) |
activate#( n__from( X ) ) | → | activate#( X ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | 2 x1 + 3 | |
[activate# (x1) ] | = | 2 x1 | |
[n__from (x1) ] | = | 2 x1 + 3 | |
[n__s (x1) ] | = | x1 | |
[after (x1, x2) ] | = | x1 | |
[0] | = | 0 | |
[s (x1) ] | = | x1 | |
[cons (x1, x2) ] | = | x1 | |
[activate (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
activate#( n__s( X ) ) | → | activate#( X ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | 2 | |
[activate# (x1) ] | = | 2 x1 | |
[n__from (x1) ] | = | 0 | |
[n__s (x1) ] | = | 2 x1 + 3 | |
[after (x1, x2) ] | = | 2 x1 + x2 | |
[0] | = | 0 | |
[s (x1) ] | = | 2 x1 + 3 | |
[cons (x1, x2) ] | = | 2 x1 | |
[activate (x1) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.