| f#( X ) | → | if#( X , c , n__f( n__true ) ) |
| if#( false , X , Y ) | → | activate#( Y ) |
| activate#( n__f( X ) ) | → | f#( activate( X ) ) |
| activate#( n__f( X ) ) | → | activate#( X ) |
| activate#( n__true ) | → | true# |
The dependency pairs are split into 1 component(s).
| if#( false , X , Y ) | → | activate#( Y ) |
| activate#( n__f( X ) ) | → | f#( activate( X ) ) |
| f#( X ) | → | if#( X , c , n__f( n__true ) ) |
| activate#( n__f( X ) ) | → | activate#( X ) |
Linear polynomial interpretation over the naturals
| [true] | = | 0 | |
| [if (x1, x2, x3) ] | = | x1 + 2 x2 + x3 | |
| [n__true] | = | 0 | |
| [false] | = | 2 | |
| [activate# (x1) ] | = | x1 + 3 | |
| [if# (x1, x2, x3) ] | = | 2 x1 + x2 | |
| [c] | = | 0 | |
| [f (x1) ] | = | 2 x1 + 3 | |
| [n__f (x1) ] | = | 2 x1 + 3 | |
| [f# (x1) ] | = | 2 x1 + 3 | |
| [activate (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| f#( X ) | → | if#( X , c , n__f( n__true ) ) |
The dependency pairs are split into 0 component(s).