Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _if_1 : symb | activate : symb | c : symb | f : symb | false : symb | n__f : symb | true : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._if_1 => 3 | M.activate => 1 | M.c => 0 | M.f => 1 | M.false => 0 | M.n__f => 1 | M.true => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _if_1 x3 x2 x1 := F0 M._if_1 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition activate x1 := F0 M.activate (Vcons x1 Vnil). Definition c := F0 M.c Vnil. Definition f x1 := F0 M.f (Vcons x1 Vnil). Definition false := F0 M.false Vnil. Definition n__f x1 := F0 M.n__f (Vcons x1 Vnil). Definition true := F0 M.true Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.f (V0 0)) (S0._if_1 (V0 0) S0.c (S0.n__f S0.true)) :: R0 (S0._if_1 S0.true (V0 0) (V0 1)) (V0 0) :: R0 (S0._if_1 S0.false (V0 0) (V0 1)) (S0.activate (V0 1)) :: R0 (S0.f (V0 0)) (S0.n__f (V0 0)) :: R0 (S0.activate (S0.n__f (V0 0))) (S0.f (V0 0)) :: R0 (S0.activate (V0 0)) (V0 0) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_if_1 x3 x2 x1 := F1 (hd_symb s1_p M._if_1) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition _if_1 x3 x2 x1 := F1 (int_symb s1_p M._if_1) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hactivate x1 := F1 (hd_symb s1_p M.activate) (Vcons x1 Vnil). Definition activate x1 := F1 (int_symb s1_p M.activate) (Vcons x1 Vnil). Definition hc := F1 (hd_symb s1_p M.c) Vnil. Definition c := F1 (int_symb s1_p M.c) Vnil. Definition hf x1 := F1 (hd_symb s1_p M.f) (Vcons x1 Vnil). Definition f x1 := F1 (int_symb s1_p M.f) (Vcons x1 Vnil). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hn__f x1 := F1 (hd_symb s1_p M.n__f) (Vcons x1 Vnil). Definition n__f x1 := F1 (int_symb s1_p M.n__f) (Vcons x1 Vnil). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. End S1. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.f) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.f) => (2%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._if_1) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M._if_1) => (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (3%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.c) => nil | (int_symb M.c) => nil | (hd_symb M.n__f) => nil | (int_symb M.n__f) => (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.false) => nil | (int_symb M.false) => (2%Z, Vnil) :: nil | (hd_symb M.activate) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.activate) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.h_if_1 (S1.false) (V1 0) (V1 1)) (S1.hactivate (V1 1)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.