Require terminaison. Require Relations. Require term. Require List. Require equational_theory. Require rpo_extension. Require equational_extension. Require closure_extension. Require term_extension. Require dp. Require Inclusion. Require or_ext_generated. Require ZArith. Require ring_extention. Require Zwf. Require Inverse_Image. Require matrix. Require more_list_extention. Import List. Import ZArith. Set Implicit Arguments. Module algebra. Module F <:term.Signature. Inductive symb : Set := (* id_active *) | id_active : symb (* id_ok *) | id_ok : symb (* id_mark *) | id_mark : symb (* id_cons1 *) | id_cons1 : symb (* id_s *) | id_s : symb (* id_2nd *) | id_2nd : symb (* id_top *) | id_top : symb (* id_from *) | id_from : symb (* id_cons *) | id_cons : symb (* id_proper *) | id_proper : symb . Definition symb_eq_bool (f1 f2:symb) : bool := match f1,f2 with | id_active,id_active => true | id_ok,id_ok => true | id_mark,id_mark => true | id_cons1,id_cons1 => true | id_s,id_s => true | id_2nd,id_2nd => true | id_top,id_top => true | id_from,id_from => true | id_cons,id_cons => true | id_proper,id_proper => true | _,_ => false end. (* Proof of decidability of equality over symb *) Definition symb_eq_bool_ok(f1 f2:symb) : match symb_eq_bool f1 f2 with | true => f1 = f2 | false => f1 <> f2 end. Proof. intros f1 f2. refine match f1 as u1,f2 as u2 return match symb_eq_bool u1 u2 return Prop with | true => u1 = u2 | false => u1 <> u2 end with | id_active,id_active => refl_equal _ | id_ok,id_ok => refl_equal _ | id_mark,id_mark => refl_equal _ | id_cons1,id_cons1 => refl_equal _ | id_s,id_s => refl_equal _ | id_2nd,id_2nd => refl_equal _ | id_top,id_top => refl_equal _ | id_from,id_from => refl_equal _ | id_cons,id_cons => refl_equal _ | id_proper,id_proper => refl_equal _ | _,_ => _ end;intros abs;discriminate. Defined. Definition arity (f:symb) := match f with | id_active => term.Free 1 | id_ok => term.Free 1 | id_mark => term.Free 1 | id_cons1 => term.Free 2 | id_s => term.Free 1 | id_2nd => term.Free 1 | id_top => term.Free 1 | id_from => term.Free 1 | id_cons => term.Free 2 | id_proper => term.Free 1 end. Definition symb_order (f1 f2:symb) : bool := match f1,f2 with | id_active,id_active => true | id_active,id_ok => false | id_active,id_mark => false | id_active,id_cons1 => false | id_active,id_s => false | id_active,id_2nd => false | id_active,id_top => false | id_active,id_from => false | id_active,id_cons => false | id_active,id_proper => false | id_ok,id_active => true | id_ok,id_ok => true | id_ok,id_mark => false | id_ok,id_cons1 => false | id_ok,id_s => false | id_ok,id_2nd => false | id_ok,id_top => false | id_ok,id_from => false | id_ok,id_cons => false | id_ok,id_proper => false | id_mark,id_active => true | id_mark,id_ok => true | id_mark,id_mark => true | id_mark,id_cons1 => false | id_mark,id_s => false | id_mark,id_2nd => false | id_mark,id_top => false | id_mark,id_from => false | id_mark,id_cons => false | id_mark,id_proper => false | id_cons1,id_active => true | id_cons1,id_ok => true | id_cons1,id_mark => true | id_cons1,id_cons1 => true | id_cons1,id_s => false | id_cons1,id_2nd => false | id_cons1,id_top => false | id_cons1,id_from => false | id_cons1,id_cons => false | id_cons1,id_proper => false | id_s,id_active => true | id_s,id_ok => true | id_s,id_mark => true | id_s,id_cons1 => true | id_s,id_s => true | id_s,id_2nd => false | id_s,id_top => false | id_s,id_from => false | id_s,id_cons => false | id_s,id_proper => false | id_2nd,id_active => true | id_2nd,id_ok => true | id_2nd,id_mark => true | id_2nd,id_cons1 => true | id_2nd,id_s => true | id_2nd,id_2nd => true | id_2nd,id_top => false | id_2nd,id_from => false | id_2nd,id_cons => false | id_2nd,id_proper => false | id_top,id_active => true | id_top,id_ok => true | id_top,id_mark => true | id_top,id_cons1 => true | id_top,id_s => true | id_top,id_2nd => true | id_top,id_top => true | id_top,id_from => false | id_top,id_cons => false | id_top,id_proper => false | id_from,id_active => true | id_from,id_ok => true | id_from,id_mark => true | id_from,id_cons1 => true | id_from,id_s => true | id_from,id_2nd => true | id_from,id_top => true | id_from,id_from => true | id_from,id_cons => false | id_from,id_proper => false | id_cons,id_active => true | id_cons,id_ok => true | id_cons,id_mark => true | id_cons,id_cons1 => true | id_cons,id_s => true | id_cons,id_2nd => true | id_cons,id_top => true | id_cons,id_from => true | id_cons,id_cons => true | id_cons,id_proper => false | id_proper,id_active => true | id_proper,id_ok => true | id_proper,id_mark => true | id_proper,id_cons1 => true | id_proper,id_s => true | id_proper,id_2nd => true | id_proper,id_top => true | id_proper,id_from => true | id_proper,id_cons => true | id_proper,id_proper => true end. Module Symb. Definition A := symb. Definition eq_A := @eq A. Definition eq_proof : equivalence A eq_A. Proof. constructor. red ;reflexivity . red ;intros ;transitivity y ;assumption. red ;intros ;symmetry ;assumption. Defined. Add Relation A eq_A reflexivity proved by (@equiv_refl _ _ eq_proof) symmetry proved by (@equiv_sym _ _ eq_proof) transitivity proved by (@equiv_trans _ _ eq_proof) as EQA . Definition eq_bool := symb_eq_bool. Definition eq_bool_ok := symb_eq_bool_ok. End Symb. Export Symb. End F. Module Alg := term.Make'(F)(term_extension.IntVars). Module Alg_ext := term_extension.Make(Alg). Module EQT := equational_theory.Make(Alg). Module EQT_ext := equational_extension.Make(EQT). End algebra. Module R_xml_0_deep_rew. Inductive R_xml_0_rules : algebra.Alg.term ->algebra.Alg.term ->Prop := (* active(2nd(cons1(X_,cons(Y_,Z_)))) -> mark(Y_) *) | R_xml_0_rule_0 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 2)::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 1)::(algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 2)::(algebra.Alg.Var 3)::nil))::nil))::nil))::nil)) (* active(2nd(cons(X_,X1_))) -> mark(2nd(cons1(X_,X1_))) *) | R_xml_0_rule_1 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 1):: (algebra.Alg.Var 4)::nil))::nil))::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 1)::(algebra.Alg.Var 4)::nil))::nil))::nil)) (* active(from(X_)) -> mark(cons(X_,from(s(X_)))) *) | R_xml_0_rule_2 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 1)::(algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil))::nil))::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)) (* active(2nd(X_)) -> 2nd(active(X_)) *) | R_xml_0_rule_3 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)) (* active(cons(X1_,X2_)) -> cons(active(X1_),X2_) *) | R_xml_0_rule_4 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 5)::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (* active(from(X_)) -> from(active(X_)) *) | R_xml_0_rule_5 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)) (* active(s(X_)) -> s(active(X_)) *) | R_xml_0_rule_6 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)) (* active(cons1(X1_,X2_)) -> cons1(active(X1_),X2_) *) | R_xml_0_rule_7 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 5)::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (* active(cons1(X1_,X2_)) -> cons1(X1_,active(X2_)) *) | R_xml_0_rule_8 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (* 2nd(mark(X_)) -> mark(2nd(X_)) *) | R_xml_0_rule_9 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)) (* cons(mark(X1_),X2_) -> mark(cons(X1_,X2_)) *) | R_xml_0_rule_10 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 5)::nil)) (* from(mark(X_)) -> mark(from(X_)) *) | R_xml_0_rule_11 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)) (* s(mark(X_)) -> mark(s(X_)) *) | R_xml_0_rule_12 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)) (* cons1(mark(X1_),X2_) -> mark(cons1(X1_,X2_)) *) | R_xml_0_rule_13 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 5)::nil)) (* cons1(X1_,mark(X2_)) -> mark(cons1(X1_,X2_)) *) | R_xml_0_rule_14 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 5)::nil))::nil)) (* proper(2nd(X_)) -> 2nd(proper(X_)) *) | R_xml_0_rule_15 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)) (* proper(cons(X1_,X2_)) -> cons(proper(X1_),proper(X2_)) *) | R_xml_0_rule_16 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (* proper(from(X_)) -> from(proper(X_)) *) | R_xml_0_rule_17 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)) (* proper(s(X_)) -> s(proper(X_)) *) | R_xml_0_rule_18 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)) (* proper(cons1(X1_,X2_)) -> cons1(proper(X1_),proper(X2_)) *) | R_xml_0_rule_19 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (* 2nd(ok(X_)) -> ok(2nd(X_)) *) | R_xml_0_rule_20 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)) (* cons(ok(X1_),ok(X2_)) -> ok(cons(X1_,X2_)) *) | R_xml_0_rule_21 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 5)::nil))::nil)) (* from(ok(X_)) -> ok(from(X_)) *) | R_xml_0_rule_22 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)) (* s(ok(X_)) -> ok(s(X_)) *) | R_xml_0_rule_23 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)) (* cons1(ok(X1_),ok(X2_)) -> ok(cons1(X1_,X2_)) *) | R_xml_0_rule_24 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)) (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 5)::nil))::nil)) (* top(mark(X_)) -> top(proper(X_)) *) | R_xml_0_rule_25 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)) (* top(ok(X_)) -> top(active(X_)) *) | R_xml_0_rule_26 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)) . Definition R_xml_0_rule_as_list_0 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 1)::(algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 2)::(algebra.Alg.Var 3)::nil))::nil))::nil))::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 2)::nil))):: nil. Definition R_xml_0_rule_as_list_1 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 1)::(algebra.Alg.Var 4)::nil))::nil))::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 1):: (algebra.Alg.Var 4)::nil))::nil))::nil)))::R_xml_0_rule_as_list_0. Definition R_xml_0_rule_as_list_2 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 1)::(algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil))::nil))::nil))):: R_xml_0_rule_as_list_1. Definition R_xml_0_rule_as_list_3 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil))):: R_xml_0_rule_as_list_2. Definition R_xml_0_rule_as_list_4 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 5)::nil)))::R_xml_0_rule_as_list_3. Definition R_xml_0_rule_as_list_5 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil))):: R_xml_0_rule_as_list_4. Definition R_xml_0_rule_as_list_6 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_5. Definition R_xml_0_rule_as_list_7 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 5)::nil)))::R_xml_0_rule_as_list_6. Definition R_xml_0_rule_as_list_8 := ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 5)::nil))::nil))):: R_xml_0_rule_as_list_7. Definition R_xml_0_rule_as_list_9 := ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_8. Definition R_xml_0_rule_as_list_10 := ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 4)::nil))::(algebra.Alg.Var 5)::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4)::(algebra.Alg.Var 5)::nil))::nil))):: R_xml_0_rule_as_list_9. Definition R_xml_0_rule_as_list_11 := ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_10. Definition R_xml_0_rule_as_list_12 := ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_11. Definition R_xml_0_rule_as_list_13 := ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 5)::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)))::R_xml_0_rule_as_list_12. Definition R_xml_0_rule_as_list_14 := ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)))::R_xml_0_rule_as_list_13. Definition R_xml_0_rule_as_list_15 := ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil))):: R_xml_0_rule_as_list_14. Definition R_xml_0_rule_as_list_16 := ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 5)::nil))::nil))):: R_xml_0_rule_as_list_15. Definition R_xml_0_rule_as_list_17 := ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil))):: R_xml_0_rule_as_list_16. Definition R_xml_0_rule_as_list_18 := ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_17. Definition R_xml_0_rule_as_list_19 := ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4):: (algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 5)::nil))::nil))):: R_xml_0_rule_as_list_18. Definition R_xml_0_rule_as_list_20 := ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_19. Definition R_xml_0_rule_as_list_21 := ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Var 4)::(algebra.Alg.Var 5)::nil))::nil))):: R_xml_0_rule_as_list_20. Definition R_xml_0_rule_as_list_22 := ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_21. Definition R_xml_0_rule_as_list_23 := ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)))::R_xml_0_rule_as_list_22. Definition R_xml_0_rule_as_list_24 := ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Var 4)::(algebra.Alg.Var 5)::nil))::nil))):: R_xml_0_rule_as_list_23. Definition R_xml_0_rule_as_list_25 := ((algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_mark ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_proper ((algebra.Alg.Var 1)::nil))::nil))):: R_xml_0_rule_as_list_24. Definition R_xml_0_rule_as_list_26 := ((algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_ok ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_active ((algebra.Alg.Var 1)::nil))::nil))):: R_xml_0_rule_as_list_25. Definition R_xml_0_rule_as_list := R_xml_0_rule_as_list_26. Lemma R_xml_0_rules_included : forall l r, R_xml_0_rules r l <-> In (l,r) R_xml_0_rule_as_list. Proof. intros l r. constructor. intros H. case H;clear H; (apply (more_list.mem_impl_in (@eq (algebra.Alg.term*algebra.Alg.term))); [tauto|idtac]); match goal with | |- _ _ _ ?t ?l => let u := fresh "u" in (generalize (more_list.mem_bool_ok _ _ algebra.Alg_ext.eq_term_term_bool_ok t l); set (u:=more_list.mem_bool algebra.Alg_ext.eq_term_term_bool t l) in *; vm_compute in u|-;unfold u in *;clear u;intros H;refine H) end . intros H. vm_compute in H|-. rewrite <- or_ext_generated.or25_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 27. injection H;intros ;subst;constructor 26. injection H;intros ;subst;constructor 25. injection H;intros ;subst;constructor 24. injection H;intros ;subst;constructor 23. injection H;intros ;subst;constructor 22. injection H;intros ;subst;constructor 21. injection H;intros ;subst;constructor 20. injection H;intros ;subst;constructor 19. injection H;intros ;subst;constructor 18. injection H;intros ;subst;constructor 17. injection H;intros ;subst;constructor 16. injection H;intros ;subst;constructor 15. injection H;intros ;subst;constructor 14. injection H;intros ;subst;constructor 13. injection H;intros ;subst;constructor 12. injection H;intros ;subst;constructor 11. injection H;intros ;subst;constructor 10. injection H;intros ;subst;constructor 9. injection H;intros ;subst;constructor 8. injection H;intros ;subst;constructor 7. injection H;intros ;subst;constructor 6. injection H;intros ;subst;constructor 5. injection H;intros ;subst;constructor 4. rewrite <- or_ext_generated.or4_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 3. injection H;intros ;subst;constructor 2. injection H;intros ;subst;constructor 1. elim H. Qed. Lemma R_xml_0_non_var : forall x t, ~R_xml_0_rules t (algebra.EQT.T.Var x). Proof. intros x t H. inversion H. Qed. Lemma R_xml_0_reg : forall s t, (R_xml_0_rules s t) -> forall x, In x (algebra.Alg.var_list s) ->In x (algebra.Alg.var_list t). Proof. intros s t H. inversion H;intros x Hx; (apply (more_list.mem_impl_in (@eq algebra.Alg.variable));[tauto|idtac]); apply (more_list.in_impl_mem (@eq algebra.Alg.variable)) in Hx; vm_compute in Hx|-*;tauto. Qed. Inductive and_2 (x7 x8:Prop) : Prop := | conj_2 : x7->x8->and_2 x7 x8 . Lemma are_constuctors_of_R_xml_0 : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> and_2 (forall x8, t = (algebra.Alg.Term algebra.F.id_ok (x8::nil)) -> exists x7, t' = (algebra.Alg.Term algebra.F.id_ok (x7::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x7 x8)) (forall x8, t = (algebra.Alg.Term algebra.F.id_mark (x8::nil)) -> exists x7, t' = (algebra.Alg.Term algebra.F.id_mark (x7::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x7 x8)). Proof. intros t t' H. induction H as [|y IH z z_to_y] using closure_extension.refl_trans_clos_ind2. constructor 1. intros x8 H;exists x8;intuition;constructor 1. intros x8 H;exists x8;intuition;constructor 1. inversion z_to_y as [t1 t2 H H0 H1|f l1 l2 H0 H H2];clear z_to_y;subst. inversion H as [t1 t2 sigma H2 H1 H0];clear H IH;subst;inversion H2; clear ;constructor;try (intros until 0 );clear ;intros abs; discriminate abs. destruct IH as [H_id_ok H_id_mark]. constructor. clear H_id_mark;intros x8 H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x8 |- _ => destruct (H_id_ok y (refl_equal _)) as [x7];intros ;intuition; exists x7;intuition;eapply closure_extension.refl_trans_clos_R; eassumption end . clear H_id_ok;intros x8 H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x8 |- _ => destruct (H_id_mark y (refl_equal _)) as [x7];intros ;intuition; exists x7;intuition;eapply closure_extension.refl_trans_clos_R; eassumption end . Qed. Lemma id_ok_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x8, t = (algebra.Alg.Term algebra.F.id_ok (x8::nil)) -> exists x7, t' = (algebra.Alg.Term algebra.F.id_ok (x7::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x7 x8). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_mark_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x8, t = (algebra.Alg.Term algebra.F.id_mark (x8::nil)) -> exists x7, t' = (algebra.Alg.Term algebra.F.id_mark (x7::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x7 x8). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Ltac impossible_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_ok (?x7::nil)) |- _ => let x7 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_ok_is_R_xml_0_constructor H (refl_equal _)) as [x7 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_mark (?x7::nil)) |- _ => let x7 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_mark_is_R_xml_0_constructor H (refl_equal _)) as [x7 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))) end . Ltac simplify_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_ok (?x7::nil)) |- _ => let x7 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_ok_is_R_xml_0_constructor H (refl_equal _)) as [x7 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_mark (?x7::nil)) |- _ => let x7 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_mark_is_R_xml_0_constructor H (refl_equal _)) as [x7 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))) end . End R_xml_0_deep_rew. Module InterpGen := interp.Interp(algebra.EQT). Module ddp := dp.MakeDP(algebra.EQT). Module SymbType. Definition A := algebra.Alg.F.Symb.A. End SymbType. Module Symb_more_list := more_list_extention.Make(SymbType)(algebra.Alg.F.Symb). Module SymbSet := list_set.Make(algebra.F.Symb). Module Interp. Section S. Require Import interp. Hypothesis A : Type. Hypothesis Ale Alt Aeq : A -> A -> Prop. Hypothesis Aop : interp.ordering_pair Aeq Alt Ale. Hypothesis A0 : A. Notation Local "a <= b" := (Ale a b). Hypothesis P_id_active : A ->A. Hypothesis P_id_ok : A ->A. Hypothesis P_id_mark : A ->A. Hypothesis P_id_cons1 : A ->A ->A. Hypothesis P_id_s : A ->A. Hypothesis P_id_2nd : A ->A. Hypothesis P_id_top : A ->A. Hypothesis P_id_from : A ->A. Hypothesis P_id_cons : A ->A ->A. Hypothesis P_id_proper : A ->A. Hypothesis P_id_active_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Hypothesis P_id_ok_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Hypothesis P_id_mark_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Hypothesis P_id_cons1_monotonic : forall x8 x10 x9 x7, (A0 <= x10)/\ (x10 <= x9) -> (A0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Hypothesis P_id_s_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Hypothesis P_id_2nd_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Hypothesis P_id_top_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Hypothesis P_id_from_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Hypothesis P_id_cons_monotonic : forall x8 x10 x9 x7, (A0 <= x10)/\ (x10 <= x9) -> (A0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Hypothesis P_id_proper_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Hypothesis P_id_active_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_active x7. Hypothesis P_id_ok_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_ok x7. Hypothesis P_id_mark_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_mark x7. Hypothesis P_id_cons1_bounded : forall x8 x7, (A0 <= x7) ->(A0 <= x8) ->A0 <= P_id_cons1 x8 x7. Hypothesis P_id_s_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_s x7. Hypothesis P_id_2nd_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_2nd x7. Hypothesis P_id_top_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_top x7. Hypothesis P_id_from_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_from x7. Hypothesis P_id_cons_bounded : forall x8 x7, (A0 <= x7) ->(A0 <= x8) ->A0 <= P_id_cons x8 x7. Hypothesis P_id_proper_bounded : forall x7, (A0 <= x7) ->A0 <= P_id_proper x7. Fixpoint measure t { struct t } := match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => A0 end. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => A0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Definition Pols f : InterpGen.Pol_type A (InterpGen.get_arity f) := match f with | algebra.F.id_active => P_id_active | algebra.F.id_ok => P_id_ok | algebra.F.id_mark => P_id_mark | algebra.F.id_cons1 => P_id_cons1 | algebra.F.id_s => P_id_s | algebra.F.id_2nd => P_id_2nd | algebra.F.id_top => P_id_top | algebra.F.id_from => P_id_from | algebra.F.id_cons => P_id_cons | algebra.F.id_proper => P_id_proper end. Lemma same_measure : forall t, measure t = InterpGen.measure A0 Pols t. Proof. fix 1 . intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_active => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_ok => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_mark => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_cons1 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_s => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_2nd => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_top => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_from => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_cons => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_proper => match l with | nil => _ | _::nil => _ | _::_::_ => _ end end;simpl in |-*;unfold eq_rect_r, eq_rect, sym_eq in |-*; try (reflexivity );f_equal ;auto. Qed. Lemma measure_bounded : forall t, A0 <= measure t. Proof. intros t. rewrite same_measure in |-*. apply (InterpGen.measure_bounded Aop). intros f. case f. vm_compute in |-*;intros ;apply P_id_active_bounded;assumption. vm_compute in |-*;intros ;apply P_id_ok_bounded;assumption. vm_compute in |-*;intros ;apply P_id_mark_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_2nd_bounded;assumption. vm_compute in |-*;intros ;apply P_id_top_bounded;assumption. vm_compute in |-*;intros ;apply P_id_from_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons_bounded;assumption. vm_compute in |-*;intros ;apply P_id_proper_bounded;assumption. Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. intros . do 2 (rewrite same_measure in |-*). apply InterpGen.measure_star_monotonic with (1:=Aop) (Pols:=Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). intros f. case f. vm_compute in |-*;intros ;apply P_id_active_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_ok_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_mark_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_cons1_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_s_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_2nd_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_top_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_from_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_cons_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_proper_monotonic;assumption. intros f. case f. vm_compute in |-*;intros ;apply P_id_active_bounded;assumption. vm_compute in |-*;intros ;apply P_id_ok_bounded;assumption. vm_compute in |-*;intros ;apply P_id_mark_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_2nd_bounded;assumption. vm_compute in |-*;intros ;apply P_id_top_bounded;assumption. vm_compute in |-*;intros ;apply P_id_from_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons_bounded;assumption. vm_compute in |-*;intros ;apply P_id_proper_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. assumption. Qed. Hypothesis P_id_PROPER : A ->A. Hypothesis P_id_CONS1 : A ->A ->A. Hypothesis P_id_ACTIVE : A ->A. Hypothesis P_id_FROM : A ->A. Hypothesis P_id_TOP : A ->A. Hypothesis P_id_CONS : A ->A ->A. Hypothesis P_id_2ND : A ->A. Hypothesis P_id_S : A ->A. Hypothesis P_id_PROPER_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Hypothesis P_id_CONS1_monotonic : forall x8 x10 x9 x7, (A0 <= x10)/\ (x10 <= x9) -> (A0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Hypothesis P_id_ACTIVE_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Hypothesis P_id_FROM_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Hypothesis P_id_TOP_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Hypothesis P_id_CONS_monotonic : forall x8 x10 x9 x7, (A0 <= x10)/\ (x10 <= x9) -> (A0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Hypothesis P_id_2ND_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Hypothesis P_id_S_monotonic : forall x8 x7, (A0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Definition marked_measure t := match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Definition Marked_pols : forall f, (algebra.EQT.defined R_xml_0_deep_rew.R_xml_0_rules f) -> InterpGen.Pol_type A (InterpGen.get_arity f). Proof. intros f H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x7;apply (P_id_PROPER x7). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x8 x7;apply (P_id_CONS x8 x7). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x7;apply (P_id_FROM x7). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x7;apply (P_id_TOP x7). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x7;apply (P_id_2ND x7). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x7;apply (P_id_S x7). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x8 x7;apply (P_id_CONS1 x8 x7). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x7;apply (P_id_ACTIVE x7). discriminate H. Defined. Lemma same_marked_measure : forall t, marked_measure t = InterpGen.marked_measure A0 Pols Marked_pols (ddp.defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included) t. Proof. intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_active => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_ok => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_mark => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_cons1 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_s => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_2nd => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_top => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_from => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_cons => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_proper => match l with | nil => _ | _::nil => _ | _::_::_ => _ end end. vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . Qed. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. intros . do 2 (rewrite same_marked_measure in |-*). apply InterpGen.marked_measure_star_monotonic with (1:=Aop) (Pols:= Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_active_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_ok_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_mark_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_cons1_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_s_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_2nd_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_top_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_from_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_cons_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_proper_monotonic;assumption. clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_active_bounded;assumption. vm_compute in |-*;intros ;apply P_id_ok_bounded;assumption. vm_compute in |-*;intros ;apply P_id_mark_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_2nd_bounded;assumption. vm_compute in |-*;intros ;apply P_id_top_bounded;assumption. vm_compute in |-*;intros ;apply P_id_from_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons_bounded;assumption. vm_compute in |-*;intros ;apply P_id_proper_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. clear f. intros f. clear H. intros H. generalize H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_PROPER_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_CONS_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_FROM_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_TOP_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_2ND_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_S_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_CONS1_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_ACTIVE_monotonic;assumption. discriminate H. assumption. Qed. End S. End Interp. Module InterpZ. Section S. Open Scope Z_scope. Hypothesis min_value : Z. Import ring_extention. Notation Local "'Alt'" := (Zwf.Zwf min_value). Notation Local "'Ale'" := Zle. Notation Local "'Aeq'" := (@eq Z). Notation Local "a <= b" := (Ale a b). Notation Local "a < b" := (Alt a b). Hypothesis P_id_active : Z ->Z. Hypothesis P_id_ok : Z ->Z. Hypothesis P_id_mark : Z ->Z. Hypothesis P_id_cons1 : Z ->Z ->Z. Hypothesis P_id_s : Z ->Z. Hypothesis P_id_2nd : Z ->Z. Hypothesis P_id_top : Z ->Z. Hypothesis P_id_from : Z ->Z. Hypothesis P_id_cons : Z ->Z ->Z. Hypothesis P_id_proper : Z ->Z. Hypothesis P_id_active_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Hypothesis P_id_ok_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Hypothesis P_id_mark_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Hypothesis P_id_cons1_monotonic : forall x8 x10 x9 x7, (min_value <= x10)/\ (x10 <= x9) -> (min_value <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Hypothesis P_id_s_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Hypothesis P_id_2nd_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Hypothesis P_id_top_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Hypothesis P_id_from_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Hypothesis P_id_cons_monotonic : forall x8 x10 x9 x7, (min_value <= x10)/\ (x10 <= x9) -> (min_value <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Hypothesis P_id_proper_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Hypothesis P_id_active_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_active x7. Hypothesis P_id_ok_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_ok x7. Hypothesis P_id_mark_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_mark x7. Hypothesis P_id_cons1_bounded : forall x8 x7, (min_value <= x7) ->(min_value <= x8) ->min_value <= P_id_cons1 x8 x7. Hypothesis P_id_s_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_s x7. Hypothesis P_id_2nd_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_2nd x7. Hypothesis P_id_top_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_top x7. Hypothesis P_id_from_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_from x7. Hypothesis P_id_cons_bounded : forall x8 x7, (min_value <= x7) ->(min_value <= x8) ->min_value <= P_id_cons x8 x7. Hypothesis P_id_proper_bounded : forall x7, (min_value <= x7) ->min_value <= P_id_proper x7. Definition measure := Interp.measure min_value P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => min_value end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, min_value <= measure t. Proof. unfold measure in |-*. apply Interp.measure_bounded with Alt Aeq; (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply Interp.measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Hypothesis P_id_PROPER : Z ->Z. Hypothesis P_id_CONS1 : Z ->Z ->Z. Hypothesis P_id_ACTIVE : Z ->Z. Hypothesis P_id_FROM : Z ->Z. Hypothesis P_id_TOP : Z ->Z. Hypothesis P_id_CONS : Z ->Z ->Z. Hypothesis P_id_2ND : Z ->Z. Hypothesis P_id_S : Z ->Z. Hypothesis P_id_PROPER_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Hypothesis P_id_CONS1_monotonic : forall x8 x10 x9 x7, (min_value <= x10)/\ (x10 <= x9) -> (min_value <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Hypothesis P_id_ACTIVE_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Hypothesis P_id_FROM_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Hypothesis P_id_TOP_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Hypothesis P_id_CONS_monotonic : forall x8 x10 x9 x7, (min_value <= x10)/\ (x10 <= x9) -> (min_value <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Hypothesis P_id_2ND_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Hypothesis P_id_S_monotonic : forall x8 x7, (min_value <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Definition marked_measure := Interp.marked_measure min_value P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply Interp.marked_measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. End S. End InterpZ. Module WF_R_xml_0_deep_rew. Inductive DP_R_xml_0 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_0 : forall x4 x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons (x1::x4::nil))::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons1 (x1::x4::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_1 : forall x4 x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons (x1::x4::nil))::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons1 (x1::x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_2 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons (x1::(algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_3 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_4 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_s (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_5 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_6 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_7 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_active (x4::nil))::x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_8 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_active (x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_9 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_10 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_11 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_12 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_13 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_active (x4::nil))::x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_14 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_active (x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_15 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons1 (x4::(algebra.Alg.Term algebra.F.id_active (x5::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_16 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_active (x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* <2nd(mark(X_)),2nd(X_)> *) | DP_R_xml_0_17 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) (* *) | DP_R_xml_0_18 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x5 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) (* *) | DP_R_xml_0_19 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_from (x1::nil)) (algebra.Alg.Term algebra.F.id_from (x7::nil)) (* *) | DP_R_xml_0_20 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_s (x1::nil)) (algebra.Alg.Term algebra.F.id_s (x7::nil)) (* *) | DP_R_xml_0_21 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x5 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) (* *) | DP_R_xml_0_22 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) (* *) | DP_R_xml_0_23 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_24 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_25 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_proper (x4::nil))::(algebra.Alg.Term algebra.F.id_proper (x5::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_26 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x4::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_27 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x5::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_28 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_29 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_30 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_31 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_32 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_proper (x4::nil))::(algebra.Alg.Term algebra.F.id_proper (x5::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_33 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x4::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_34 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x5::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* <2nd(ok(X_)),2nd(X_)> *) | DP_R_xml_0_35 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) (* *) | DP_R_xml_0_36 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) (* *) | DP_R_xml_0_37 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_from (x1::nil)) (algebra.Alg.Term algebra.F.id_from (x7::nil)) (* *) | DP_R_xml_0_38 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_s (x1::nil)) (algebra.Alg.Term algebra.F.id_s (x7::nil)) (* *) | DP_R_xml_0_39 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x5::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) (* *) | DP_R_xml_0_40 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) (* *) | DP_R_xml_0_41 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) (* *) | DP_R_xml_0_42 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) (* *) | DP_R_xml_0_43 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) . Module ddp := dp.MakeDP(algebra.EQT). Lemma R_xml_0_dp_step_spec : forall x y, (ddp.dp_step R_xml_0_deep_rew.R_xml_0_rules x y) -> exists f, exists l1, exists l2, y = algebra.Alg.Term f l2/\ (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2)/\ (ddp.dp R_xml_0_deep_rew.R_xml_0_rules x (algebra.Alg.Term f l1)). Proof. intros x y H. induction H. inversion H. subst. destruct t0. refine ((False_ind) _ _). refine (R_xml_0_deep_rew.R_xml_0_non_var H0). simpl in H|-*. exists a. exists ((List.map) (algebra.Alg.apply_subst sigma) l). exists ((List.map) (algebra.Alg.apply_subst sigma) l). repeat (constructor). assumption. exists f. exists l2. exists l1. constructor. constructor. constructor. constructor. rewrite <- closure.rwr_list_trans_clos_one_step_list. assumption. assumption. Qed. Ltac included_dp_tac H := injection H;clear H;intros;subst; repeat (match goal with | H: closure.refl_trans_clos (closure.one_step_list _) (_::_) _ |- _=> let x := fresh "x" in let l := fresh "l" in let h1 := fresh "h" in let h2 := fresh "h" in let h3 := fresh "h" in destruct (@algebra.EQT_ext.one_step_list_star_decompose_cons _ _ _ _ H) as [x [l[h1[h2 h3]]]];clear H;subst | H: closure.refl_trans_clos (closure.one_step_list _) nil _ |- _ => rewrite (@algebra.EQT_ext.one_step_list_star_decompose_nil _ _ H) in *;clear H end );simpl; econstructor eassumption . Ltac dp_concl_tac h2 h cont_tac t := match t with | False => let h' := fresh "a" in (set (h':=t) in *;cont_tac h'; repeat ( let e := type of h in (match e with | ?t => unfold t in h|-; (case h; [abstract (clear h;intros h;injection h; clear h;intros ;subst; included_dp_tac h2)| clear h;intros h;clear t]) | ?t => unfold t in h|-;elim h end ) )) | or ?a ?b => let cont_tac h' := let h'' := fresh "a" in (set (h'':=or a h') in *;cont_tac h'') in (dp_concl_tac h2 h cont_tac b) end . Module WF_DP_R_xml_0. Inductive DP_R_xml_0_scc_1 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_1_0 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x5::nil)) x7) -> DP_R_xml_0_scc_1 (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) (* *) | DP_R_xml_0_scc_1_1 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x5 x7) -> DP_R_xml_0_scc_1 (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) (* *) | DP_R_xml_0_scc_1_2 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x5::nil)) x7) -> DP_R_xml_0_scc_1 (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_1. Inductive DP_R_xml_0_scc_1_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_1_large_0 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x5::nil)) x7) -> DP_R_xml_0_scc_1_large (algebra.Alg.Term algebra.F.id_cons1 (x4:: x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) (* *) | DP_R_xml_0_scc_1_large_1 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x5 x7) -> DP_R_xml_0_scc_1_large (algebra.Alg.Term algebra.F.id_cons1 (x4:: x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) . Inductive DP_R_xml_0_scc_1_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_1_strict_0 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x5::nil)) x7) -> DP_R_xml_0_scc_1_strict (algebra.Alg.Term algebra.F.id_cons1 (x4:: x5::nil)) (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_1_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 2 + 2* x7. Definition P_id_ok (x7:Z) := 1* x7. Definition P_id_mark (x7:Z) := 1 + 1* x7. Definition P_id_cons1 (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 1 + 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 1* x7. Definition P_id_cons (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0_scc_1.DP_R_xml_0_scc_1_large. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_1_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 1 + 3* x7. Definition P_id_ok (x7:Z) := 2 + 1* x7. Definition P_id_mark (x7:Z) := 1* x7. Definition P_id_cons1 (x7:Z) (x8:Z) := 1 + 2* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 3 + 1* x7. Definition P_id_cons (x7:Z) (x8:Z) := 2 + 1* x7 + 2* x8. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 2* x7. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_1_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_1_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_1_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_1_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_1_large := WF_DP_R_xml_0_scc_1_large.wf. Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_1. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_1_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_1_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_1_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_1_large. Qed. End WF_DP_R_xml_0_scc_1. Definition wf_DP_R_xml_0_scc_1 := WF_DP_R_xml_0_scc_1.wf. Lemma acc_DP_R_xml_0_scc_1 : forall x y, (DP_R_xml_0_scc_1 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_1). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). apply wf_DP_R_xml_0_scc_1. Qed. Inductive DP_R_xml_0_non_scc_2 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_2_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_non_scc_2 (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_proper (x4::nil))::(algebra.Alg.Term algebra.F.id_proper (x5::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_2 : forall x y, (DP_R_xml_0_non_scc_2 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_3 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_3_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0_scc_3 (algebra.Alg.Term algebra.F.id_s (x1::nil)) (algebra.Alg.Term algebra.F.id_s (x7::nil)) (* *) | DP_R_xml_0_scc_3_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0_scc_3 (algebra.Alg.Term algebra.F.id_s (x1::nil)) (algebra.Alg.Term algebra.F.id_s (x7::nil)) . Module WF_DP_R_xml_0_scc_3. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 3* x7. Definition P_id_ok (x7:Z) := 1 + 2* x7. Definition P_id_mark (x7:Z) := 3 + 1* x7. Definition P_id_cons1 (x7:Z) (x8:Z) := 1* x7 + 2* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 2 + 3* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 2 + 3* x7. Definition P_id_cons (x7:Z) (x8:Z) := 3* x7 + 1* x8. Definition P_id_proper (x7:Z) := 1* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 1* x7. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_3. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_3. Definition wf_DP_R_xml_0_scc_3 := WF_DP_R_xml_0_scc_3.wf. Lemma acc_DP_R_xml_0_scc_3 : forall x y, (DP_R_xml_0_scc_3 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_3). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). apply wf_DP_R_xml_0_scc_3. Qed. Inductive DP_R_xml_0_non_scc_4 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_4_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_non_scc_4 (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_4 : forall x y, (DP_R_xml_0_non_scc_4 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_5 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_5_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0_scc_5 (algebra.Alg.Term algebra.F.id_from (x1::nil)) (algebra.Alg.Term algebra.F.id_from (x7::nil)) (* *) | DP_R_xml_0_scc_5_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0_scc_5 (algebra.Alg.Term algebra.F.id_from (x1::nil)) (algebra.Alg.Term algebra.F.id_from (x7::nil)) . Module WF_DP_R_xml_0_scc_5. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 3* x7. Definition P_id_ok (x7:Z) := 1 + 2* x7. Definition P_id_mark (x7:Z) := 3 + 1* x7. Definition P_id_cons1 (x7:Z) (x8:Z) := 1* x7 + 2* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 2 + 3* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 2 + 3* x7. Definition P_id_cons (x7:Z) (x8:Z) := 3* x7 + 1* x8. Definition P_id_proper (x7:Z) := 1* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 1* x7. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_5. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_5. Definition wf_DP_R_xml_0_scc_5 := WF_DP_R_xml_0_scc_5.wf. Lemma acc_DP_R_xml_0_scc_5 : forall x y, (DP_R_xml_0_scc_5 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_5). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). apply wf_DP_R_xml_0_scc_5. Qed. Inductive DP_R_xml_0_non_scc_6 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_6_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_non_scc_6 (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_6 : forall x y, (DP_R_xml_0_non_scc_6 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_7 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_0 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x5::nil)) x7) -> DP_R_xml_0_scc_7 (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) (* *) | DP_R_xml_0_scc_7_1 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x5 x7) -> DP_R_xml_0_scc_7 (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_7. Inductive DP_R_xml_0_scc_7_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_large_0 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x5 x7) -> DP_R_xml_0_scc_7_large (algebra.Alg.Term algebra.F.id_cons (x4:: x5::nil)) (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) . Inductive DP_R_xml_0_scc_7_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_strict_0 : forall x8 x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x4::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x5::nil)) x7) -> DP_R_xml_0_scc_7_strict (algebra.Alg.Term algebra.F.id_cons (x4:: x5::nil)) (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_7_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 2* x7. Definition P_id_ok (x7:Z) := 0. Definition P_id_mark (x7:Z) := 1 + 1* x7. Definition P_id_cons1 (x7:Z) (x8:Z) := 1* x7 + 2* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 1 + 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 1 + 2* x7. Definition P_id_cons (x7:Z) (x8:Z) := 2* x7 + 1* x8. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 1* x7. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0_scc_7.DP_R_xml_0_scc_7_large. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_7_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 1* x7. Definition P_id_ok (x7:Z) := 2 + 2* x7. Definition P_id_mark (x7:Z) := 0. Definition P_id_cons1 (x7:Z) (x8:Z) := 2 + 1* x7 + 1* x8. Definition P_id_s (x7:Z) := 2* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 2* x7. Definition P_id_cons (x7:Z) (x8:Z) := 1* x7. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 3* x8. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_7_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_7_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_7_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_7_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_7_large := WF_DP_R_xml_0_scc_7_large.wf. Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_7. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_7_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_7_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_7_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_7_large. Qed. End WF_DP_R_xml_0_scc_7. Definition wf_DP_R_xml_0_scc_7 := WF_DP_R_xml_0_scc_7.wf. Lemma acc_DP_R_xml_0_scc_7 : forall x y, (DP_R_xml_0_scc_7 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_7). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). apply wf_DP_R_xml_0_scc_7. Qed. Inductive DP_R_xml_0_non_scc_8 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_8_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_non_scc_8 (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_proper (x4::nil))::(algebra.Alg.Term algebra.F.id_proper (x5::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_8 : forall x y, (DP_R_xml_0_non_scc_8 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_7; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_9 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <2nd(ok(X_)),2nd(X_)> *) | DP_R_xml_0_scc_9_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0_scc_9 (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) (* <2nd(mark(X_)),2nd(X_)> *) | DP_R_xml_0_scc_9_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0_scc_9 (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) . Module WF_DP_R_xml_0_scc_9. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 3* x7. Definition P_id_ok (x7:Z) := 1 + 2* x7. Definition P_id_mark (x7:Z) := 3 + 1* x7. Definition P_id_cons1 (x7:Z) (x8:Z) := 1* x7 + 2* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 2 + 3* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 2 + 3* x7. Definition P_id_cons (x7:Z) (x8:Z) := 3* x7 + 1* x8. Definition P_id_proper (x7:Z) := 1* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 1* x7. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_9. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_9. Definition wf_DP_R_xml_0_scc_9 := WF_DP_R_xml_0_scc_9.wf. Lemma acc_DP_R_xml_0_scc_9 : forall x y, (DP_R_xml_0_scc_9 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_9). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). apply wf_DP_R_xml_0_scc_9. Qed. Inductive DP_R_xml_0_non_scc_10 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_10_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_non_scc_10 (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_10 : forall x y, (DP_R_xml_0_non_scc_10 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_9; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_11 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_11_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11 (algebra.Alg.Term algebra.F.id_proper (x4::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_scc_11 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_2 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11 (algebra.Alg.Term algebra.F.id_proper (x5::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_3 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_scc_11 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_4 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_scc_11 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_5 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11 (algebra.Alg.Term algebra.F.id_proper (x4::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_6 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11 (algebra.Alg.Term algebra.F.id_proper (x5::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Module WF_DP_R_xml_0_scc_11. Inductive DP_R_xml_0_scc_11_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_11_large_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11_large (algebra.Alg.Term algebra.F.id_proper (x4::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_large_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_scc_11_large (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_large_2 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11_large (algebra.Alg.Term algebra.F.id_proper (x5::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_large_3 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_scc_11_large (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_large_4 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_scc_11_large (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Inductive DP_R_xml_0_scc_11_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_11_strict_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11_strict (algebra.Alg.Term algebra.F.id_proper (x4::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_strict_1 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11_strict (algebra.Alg.Term algebra.F.id_proper (x5::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Module WF_DP_R_xml_0_scc_11_large. Inductive DP_R_xml_0_scc_11_large_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_11_large_large_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11_large_large (algebra.Alg.Term algebra.F.id_proper (x4::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_large_large_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_scc_11_large_large (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_large_large_2 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_11_large_large (algebra.Alg.Term algebra.F.id_proper (x5::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Inductive DP_R_xml_0_scc_11_large_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_11_large_strict_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_scc_11_large_strict (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) (* *) | DP_R_xml_0_scc_11_large_strict_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_scc_11_large_strict (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_proper (x7::nil)) . Module WF_DP_R_xml_0_scc_11_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 2* x7. Definition P_id_ok (x7:Z) := 1* x7. Definition P_id_mark (x7:Z) := 0. Definition P_id_cons1 (x7:Z) (x8:Z) := 0. Definition P_id_s (x7:Z) := 0. Definition P_id_2nd (x7:Z) := 2 + 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 0. Definition P_id_cons (x7:Z) (x8:Z) := 2 + 1* x7 + 1* x8. Definition P_id_proper (x7:Z) := 2 + 3* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 2* x7. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0_scc_11_large.DP_R_xml_0_scc_11_large_large. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_11_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 1* x7. Definition P_id_ok (x7:Z) := 0. Definition P_id_mark (x7:Z) := 0. Definition P_id_cons1 (x7:Z) (x8:Z) := 3* x7. Definition P_id_s (x7:Z) := 2 + 1* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 2 + 1* x7. Definition P_id_cons (x7:Z) (x8:Z) := 1* x7 + 2* x8. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 2* x7. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_11_large_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_11_large_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_11_large_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_11_large_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_11_large_large := WF_DP_R_xml_0_scc_11_large_large.wf. Lemma wf : well_founded WF_DP_R_xml_0_scc_11.DP_R_xml_0_scc_11_large. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_11_large_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_11_large_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_11_large_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_11_large_large. Qed. End WF_DP_R_xml_0_scc_11_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 2 + 2* x7. Definition P_id_ok (x7:Z) := 2 + 2* x7. Definition P_id_mark (x7:Z) := 1 + 1* x7. Definition P_id_cons1 (x7:Z) (x8:Z) := 1 + 1* x7 + 1* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 2* x7. Definition P_id_from (x7:Z) := 1* x7. Definition P_id_cons (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_proper (x7:Z) := 1* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 1* x7. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_11_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_11_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_11_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_11_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_11_large := WF_DP_R_xml_0_scc_11_large.wf. Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_11. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_11_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_11_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_11_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_11_large. Qed. End WF_DP_R_xml_0_scc_11. Definition wf_DP_R_xml_0_scc_11 := WF_DP_R_xml_0_scc_11.wf. Lemma acc_DP_R_xml_0_scc_11 : forall x y, (DP_R_xml_0_scc_11 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_11). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_non_scc_10; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_8; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))))). apply wf_DP_R_xml_0_scc_11. Qed. Inductive DP_R_xml_0_non_scc_12 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_12_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0_non_scc_12 (algebra.Alg.Term algebra.F.id_proper (x1::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_12 : forall x y, (DP_R_xml_0_non_scc_12 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_11; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_10; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_8; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))))). Qed. Inductive DP_R_xml_0_non_scc_13 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_13_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_non_scc_13 (algebra.Alg.Term algebra.F.id_cons1 (x4:: (algebra.Alg.Term algebra.F.id_active (x5::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_13 : forall x y, (DP_R_xml_0_non_scc_13 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_14 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_14_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_non_scc_14 (algebra.Alg.Term algebra.F.id_cons1 ((algebra.Alg.Term algebra.F.id_active (x4::nil))::x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_14 : forall x y, (DP_R_xml_0_non_scc_14 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_15 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_15_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_non_scc_15 (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_15 : forall x y, (DP_R_xml_0_non_scc_15 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_16 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_16_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_non_scc_16 (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_16 : forall x y, (DP_R_xml_0_non_scc_16 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_17 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_17_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_non_scc_17 (algebra.Alg.Term algebra.F.id_cons ((algebra.Alg.Term algebra.F.id_active (x4::nil))::x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_17 : forall x y, (DP_R_xml_0_non_scc_17 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_7; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_18 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_18_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_non_scc_18 (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_18 : forall x y, (DP_R_xml_0_non_scc_18 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_9; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_19 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_19_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_non_scc_19 (algebra.Alg.Term algebra.F.id_s (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_19 : forall x y, (DP_R_xml_0_non_scc_19 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_20 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_20_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_non_scc_20 (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_20 : forall x y, (DP_R_xml_0_non_scc_20 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_21 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_21_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_non_scc_21 (algebra.Alg.Term algebra.F.id_cons (x1:: (algebra.Alg.Term algebra.F.id_from ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_21 : forall x y, (DP_R_xml_0_non_scc_21 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_7; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_22 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_22_0 : forall x4 x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons (x1::x4::nil))::nil)) x7) -> DP_R_xml_0_non_scc_22 (algebra.Alg.Term algebra.F.id_cons1 (x1:: x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_22 : forall x y, (DP_R_xml_0_non_scc_22 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_23 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_23_0 : forall x4 x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons (x1::x4::nil))::nil)) x7) -> DP_R_xml_0_non_scc_23 (algebra.Alg.Term algebra.F.id_2nd ((algebra.Alg.Term algebra.F.id_cons1 (x1:: x4::nil))::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_23 : forall x y, (DP_R_xml_0_non_scc_23 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_9; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_24 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_24_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24 (algebra.Alg.Term algebra.F.id_active (x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_scc_24 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_2 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_scc_24 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_3 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_scc_24 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_4 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24 (algebra.Alg.Term algebra.F.id_active (x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_5 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24 (algebra.Alg.Term algebra.F.id_active (x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Module WF_DP_R_xml_0_scc_24. Inductive DP_R_xml_0_scc_24_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_24_large_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_scc_24_large (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_large_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_scc_24_large (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_large_2 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24_large (algebra.Alg.Term algebra.F.id_active (x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_large_3 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24_large (algebra.Alg.Term algebra.F.id_active (x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Inductive DP_R_xml_0_scc_24_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_24_strict_0 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24_strict (algebra.Alg.Term algebra.F.id_active (x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_strict_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_from (x1::nil)) x7) -> DP_R_xml_0_scc_24_strict (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Module WF_DP_R_xml_0_scc_24_large. Inductive DP_R_xml_0_scc_24_large_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_24_large_large_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2nd (x1::nil)) x7) -> DP_R_xml_0_scc_24_large_large (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Inductive DP_R_xml_0_scc_24_large_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_24_large_strict_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x7) -> DP_R_xml_0_scc_24_large_strict (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_large_strict_1 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24_large_strict (algebra.Alg.Term algebra.F.id_active (x4::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) (* *) | DP_R_xml_0_scc_24_large_strict_2 : forall x4 x5 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_cons1 (x4::x5::nil)) x7) -> DP_R_xml_0_scc_24_large_strict (algebra.Alg.Term algebra.F.id_active (x5::nil)) (algebra.Alg.Term algebra.F.id_active (x7::nil)) . Module WF_DP_R_xml_0_scc_24_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 1* x7. Definition P_id_ok (x7:Z) := 0. Definition P_id_mark (x7:Z) := 0. Definition P_id_cons1 (x7:Z) (x8:Z) := 2* x7. Definition P_id_s (x7:Z) := 3. Definition P_id_2nd (x7:Z) := 2 + 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 3 + 3* x7. Definition P_id_cons (x7:Z) (x8:Z) := 3 + 3* x7 + 1* x8. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 1* x7. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0_scc_24_large.DP_R_xml_0_scc_24_large_large. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_24_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 2* x7. Definition P_id_ok (x7:Z) := 0. Definition P_id_mark (x7:Z) := 0. Definition P_id_cons1 (x7:Z) (x8:Z) := 3 + 1* x7 + 2* x8. Definition P_id_s (x7:Z) := 2 + 3* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 0. Definition P_id_cons (x7:Z) (x8:Z) := 2* x8. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 3* x7. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_24_large_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_24_large_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_24_large_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_24_large_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_24_large_large := WF_DP_R_xml_0_scc_24_large_large.wf. Lemma wf : well_founded WF_DP_R_xml_0_scc_24.DP_R_xml_0_scc_24_large. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_24_large_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_24_large_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_24_large_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_24_large_large. Qed. End WF_DP_R_xml_0_scc_24_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 2* x7. Definition P_id_ok (x7:Z) := 0. Definition P_id_mark (x7:Z) := 1. Definition P_id_cons1 (x7:Z) (x8:Z) := 2* x7 + 1* x8. Definition P_id_s (x7:Z) := 3* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 3 + 2* x7. Definition P_id_cons (x7:Z) (x8:Z) := 3 + 2* x7. Definition P_id_proper (x7:Z) := 2* x7. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 3* x7. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 0. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_24_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_24_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_24_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_24_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_24_large := WF_DP_R_xml_0_scc_24_large.wf. Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_24. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_24_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_24_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_24_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_24_large. Qed. End WF_DP_R_xml_0_scc_24. Definition wf_DP_R_xml_0_scc_24 := WF_DP_R_xml_0_scc_24.wf. Lemma acc_DP_R_xml_0_scc_24 : forall x y, (DP_R_xml_0_scc_24 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_24). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_non_scc_23; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_22; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_21; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_20; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_19; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_18; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_17; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_16; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_15; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_14; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_13; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))))))))))). apply wf_DP_R_xml_0_scc_24. Qed. Inductive DP_R_xml_0_non_scc_25 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_25_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0_non_scc_25 (algebra.Alg.Term algebra.F.id_active (x1::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_25 : forall x y, (DP_R_xml_0_non_scc_25 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_24; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_23; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_22; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_21; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_20; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_19; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_18; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_17; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_16; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_15; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_14; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_13; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))))))))))). Qed. Inductive DP_R_xml_0_scc_26 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_26_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0_scc_26 (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) (* *) | DP_R_xml_0_scc_26_1 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0_scc_26 (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) . Module WF_DP_R_xml_0_scc_26. Inductive DP_R_xml_0_scc_26_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_26_large_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_mark (x1::nil)) x7) -> DP_R_xml_0_scc_26_large (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_proper (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) . Inductive DP_R_xml_0_scc_26_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_26_strict_0 : forall x1 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_ok (x1::nil)) x7) -> DP_R_xml_0_scc_26_strict (algebra.Alg.Term algebra.F.id_top ((algebra.Alg.Term algebra.F.id_active (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_top (x7::nil)) . Module WF_DP_R_xml_0_scc_26_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 1 + 2* x7. Definition P_id_ok (x7:Z) := 0. Definition P_id_mark (x7:Z) := 1. Definition P_id_cons1 (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 1* x7. Definition P_id_cons (x7:Z) (x8:Z) := 1* x7 + 3* x8. Definition P_id_proper (x7:Z) := 0. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 1* x7. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0_scc_26.DP_R_xml_0_scc_26_large. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_26_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_active (x7:Z) := 1* x7. Definition P_id_ok (x7:Z) := 1 + 2* x7. Definition P_id_mark (x7:Z) := 0. Definition P_id_cons1 (x7:Z) (x8:Z) := 1* x8. Definition P_id_s (x7:Z) := 1* x7. Definition P_id_2nd (x7:Z) := 1* x7. Definition P_id_top (x7:Z) := 0. Definition P_id_from (x7:Z) := 1* x7. Definition P_id_cons (x7:Z) (x8:Z) := 1* x7. Definition P_id_proper (x7:Z) := 0. Lemma P_id_active_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_active x8 <= P_id_active x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ok x8 <= P_id_ok x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_mark x8 <= P_id_mark x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons1 x8 x10 <= P_id_cons1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_s x8 <= P_id_s x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2nd x8 <= P_id_2nd x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_top x8 <= P_id_top x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_from x8 <= P_id_from x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_cons x8 x10 <= P_id_cons x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_proper x8 <= P_id_proper x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_active_bounded : forall x7, (0 <= x7) ->0 <= P_id_active x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ok_bounded : forall x7, (0 <= x7) ->0 <= P_id_ok x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_mark_bounded : forall x7, (0 <= x7) ->0 <= P_id_mark x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons1_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons1 x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x7, (0 <= x7) ->0 <= P_id_s x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2nd_bounded : forall x7, (0 <= x7) ->0 <= P_id_2nd x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_top_bounded : forall x7, (0 <= x7) ->0 <= P_id_top x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_from_bounded : forall x7, (0 <= x7) ->0 <= P_id_from x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_cons x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_proper_bounded : forall x7, (0 <= x7) ->0 <= P_id_proper x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_active (measure x7) | (algebra.Alg.Term algebra.F.id_ok (x7::nil)) => P_id_ok (measure x7) | (algebra.Alg.Term algebra.F.id_mark (x7::nil)) => P_id_mark (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8::x7::nil)) => P_id_cons1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_s (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2nd (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_top (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_from (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8::x7::nil)) => P_id_cons (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_proper (measure x7) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PROPER (x7:Z) := 0. Definition P_id_CONS1 (x7:Z) (x8:Z) := 0. Definition P_id_ACTIVE (x7:Z) := 0. Definition P_id_FROM (x7:Z) := 0. Definition P_id_TOP (x7:Z) := 1* x7. Definition P_id_CONS (x7:Z) (x8:Z) := 0. Definition P_id_2ND (x7:Z) := 0. Definition P_id_S (x7:Z) := 0. Lemma P_id_PROPER_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_PROPER x8 <= P_id_PROPER x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS1_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS1 x8 x10 <= P_id_CONS1 x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_ACTIVE_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_ACTIVE x8 <= P_id_ACTIVE x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_FROM_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_FROM x8 <= P_id_FROM x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_TOP_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_TOP x8 <= P_id_TOP x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_CONS_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_CONS x8 x10 <= P_id_CONS x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2ND_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_2ND x8 <= P_id_2ND x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_S_monotonic : forall x8 x7, (0 <= x8)/\ (x8 <= x7) ->P_id_S x8 <= P_id_S x7. Proof. intros x8 x7. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_active P_id_ok P_id_mark P_id_cons1 P_id_s P_id_2nd P_id_top P_id_from P_id_cons P_id_proper P_id_PROPER P_id_CONS1 P_id_ACTIVE P_id_FROM P_id_TOP P_id_CONS P_id_2ND P_id_S. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_proper (x7::nil)) => P_id_PROPER (measure x7) | (algebra.Alg.Term algebra.F.id_cons1 (x8:: x7::nil)) => P_id_CONS1 (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_active (x7::nil)) => P_id_ACTIVE (measure x7) | (algebra.Alg.Term algebra.F.id_from (x7::nil)) => P_id_FROM (measure x7) | (algebra.Alg.Term algebra.F.id_top (x7::nil)) => P_id_TOP (measure x7) | (algebra.Alg.Term algebra.F.id_cons (x8:: x7::nil)) => P_id_CONS (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_2nd (x7::nil)) => P_id_2ND (measure x7) | (algebra.Alg.Term algebra.F.id_s (x7::nil)) => P_id_S (measure x7) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_active_monotonic;assumption. intros ;apply P_id_ok_monotonic;assumption. intros ;apply P_id_mark_monotonic;assumption. intros ;apply P_id_cons1_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_2nd_monotonic;assumption. intros ;apply P_id_top_monotonic;assumption. intros ;apply P_id_from_monotonic;assumption. intros ;apply P_id_cons_monotonic;assumption. intros ;apply P_id_proper_monotonic;assumption. intros ;apply P_id_active_bounded;assumption. intros ;apply P_id_ok_bounded;assumption. intros ;apply P_id_mark_bounded;assumption. intros ;apply P_id_cons1_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_2nd_bounded;assumption. intros ;apply P_id_top_bounded;assumption. intros ;apply P_id_from_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_proper_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PROPER_monotonic;assumption. intros ;apply P_id_CONS1_monotonic;assumption. intros ;apply P_id_ACTIVE_monotonic;assumption. intros ;apply P_id_FROM_monotonic;assumption. intros ;apply P_id_TOP_monotonic;assumption. intros ;apply P_id_CONS_monotonic;assumption. intros ;apply P_id_2ND_monotonic;assumption. intros ;apply P_id_S_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_26_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_26_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_26_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_26_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_26_large := WF_DP_R_xml_0_scc_26_large.wf. Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_26. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_26_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_26_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_26_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_26_large. Qed. End WF_DP_R_xml_0_scc_26. Definition wf_DP_R_xml_0_scc_26 := WF_DP_R_xml_0_scc_26.wf. Lemma acc_DP_R_xml_0_scc_26 : forall x y, (DP_R_xml_0_scc_26 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_26). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_non_scc_25; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_12; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))))). apply wf_DP_R_xml_0_scc_26. Qed. Lemma wf : well_founded WF_R_xml_0_deep_rew.DP_R_xml_0. Proof. constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_non_scc_25; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_24; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_23; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_22; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_21; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_20; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_19; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_18; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_17; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_16; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_15; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_14; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_13; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_12; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_11; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_10; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_9; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_8; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_7; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_26; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_25; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_24; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_23; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_22; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_21; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_20; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_19; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_18; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_17; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_16; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_15; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_14; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_13; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_12; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_11; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_10; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_9; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_8; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_7; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_6; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_5; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_3; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_2; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_0; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (fail)))))))))))))))))))))))))))))))))))))))))))))))))))))). Qed. End WF_DP_R_xml_0. Definition wf_H := WF_DP_R_xml_0.wf. Lemma wf : well_founded (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules). Proof. apply ddp.dp_criterion. apply R_xml_0_deep_rew.R_xml_0_non_var. apply R_xml_0_deep_rew.R_xml_0_reg. intros ; apply (ddp.constructor_defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included). refine (Inclusion.wf_incl _ _ _ _ wf_H). intros x y H. destruct (R_xml_0_dp_step_spec H) as [f [l1 [l2 [H1 [H2 H3]]]]]. destruct (ddp.dp_list_complete _ _ R_xml_0_deep_rew.R_xml_0_rules_included _ _ H3) as [x' [y' [sigma [h1 [h2 h3]]]]]. clear H3. subst. vm_compute in h3|-. let e := type of h3 in (dp_concl_tac h2 h3 ltac:(fun _ => idtac) e). Qed. End WF_R_xml_0_deep_rew. (* *** Local Variables: *** *** coq-prog-name: "coqtop" *** *** coq-prog-args: ("-emacs-U" "-I" "$COCCINELLE/examples" "-I" "$COCCINELLE/term_algebra" "-I" "$COCCINELLE/term_orderings" "-I" "$COCCINELLE/basis" "-I" "$COCCINELLE/list_extensions" "-I" "$COCCINELLE/examples/cime_trace/") *** *** compile-command: "coqc -I $COCCINELLE/term_algebra -I $COCCINELLE/term_orderings -I $COCCINELLE/basis -I $COCCINELLE/list_extensions -I $COCCINELLE/examples/cime_trace/ -I $COCCINELLE/examples/ c_output/strat/tpdb-5.0___TRS___TRCSR___Ex6_9_Luc02c_C.trs/a3pat.v" *** *** End: *** *)