Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | a__c : symb | a__f : symb | c : symb | f : symb | g : symb | mark : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.a__c => 0 | M.a__f => 1 | M.c => 0 | M.f => 1 | M.g => 1 | M.mark => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition a__c := F0 M.a__c Vnil. Definition a__f x1 := F0 M.a__f (Vcons x1 Vnil). Definition c := F0 M.c Vnil. Definition f x1 := F0 M.f (Vcons x1 Vnil). Definition g x1 := F0 M.g (Vcons x1 Vnil). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 S0.a__c (S0.a__f (S0.g S0.c)) :: R0 (S0.a__f (S0.g (V0 0))) (S0.g (V0 0)) :: R0 (S0.mark S0.c) S0.a__c :: R0 (S0.mark (S0.f (V0 0))) (S0.a__f (V0 0)) :: R0 (S0.mark (S0.g (V0 0))) (S0.g (V0 0)) :: R0 S0.a__c S0.c :: R0 (S0.a__f (V0 0)) (S0.f (V0 0)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition ha__c := F1 (hd_symb s1_p M.a__c) Vnil. Definition a__c := F1 (int_symb s1_p M.a__c) Vnil. Definition ha__f x1 := F1 (hd_symb s1_p M.a__f) (Vcons x1 Vnil). Definition a__f x1 := F1 (int_symb s1_p M.a__f) (Vcons x1 Vnil). Definition hc := F1 (hd_symb s1_p M.c) Vnil. Definition c := F1 (int_symb s1_p M.c) Vnil. Definition hf x1 := F1 (hd_symb s1_p M.f) (Vcons x1 Vnil). Definition f x1 := F1 (int_symb s1_p M.f) (Vcons x1 Vnil). Definition hg x1 := F1 (hd_symb s1_p M.g) (Vcons x1 Vnil). Definition g x1 := F1 (int_symb s1_p M.g) (Vcons x1 Vnil). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.f (V1 0))) (S1.ha__f (V1 0)) :: nil) :: ( R1 (S1.ha__c) (S1.ha__f (S1.g (S1.c))) :: nil) :: ( R1 (S1.hmark (S1.c)) (S1.ha__c) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. Qed.