Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | cons : symb | first : symb | from : symb | nil : symb | s : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.cons => 1 | M.first => 2 | M.from => 1 | M.nil => 0 | M.s => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition cons x1 := F0 M.cons (Vcons x1 Vnil). Definition first x2 x1 := F0 M.first (Vcons x2 (Vcons x1 Vnil)). Definition from x1 := F0 M.from (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition s x1 := F0 M.s (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.first S0._0_1 (V0 0)) S0.nil :: R0 (S0.first (S0.s (V0 0)) (S0.cons (V0 1))) (S0.cons (V0 1)) :: R0 (S0.from (V0 0)) (S0.cons (V0 0)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hcons x1 := F1 (hd_symb s1_p M.cons) (Vcons x1 Vnil). Definition cons x1 := F1 (int_symb s1_p M.cons) (Vcons x1 Vnil). Definition hfirst x2 x1 := F1 (hd_symb s1_p M.first) (Vcons x2 (Vcons x1 Vnil)). Definition first x2 x1 := F1 (int_symb s1_p M.first) (Vcons x2 (Vcons x1 Vnil)). Definition hfrom x1 := F1 (hd_symb s1_p M.from) (Vcons x1 Vnil). Definition from x1 := F1 (int_symb s1_p M.from) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). End S1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. termination_trivial. Qed.