active#( filter( cons( X , Y ) , 0 , M ) ) | → | cons#( 0 , filter( Y , M , M ) ) |
active#( filter( cons( X , Y ) , 0 , M ) ) | → | filter#( Y , M , M ) |
active#( filter( cons( X , Y ) , s( N ) , M ) ) | → | cons#( X , filter( Y , N , M ) ) |
active#( filter( cons( X , Y ) , s( N ) , M ) ) | → | filter#( Y , N , M ) |
active#( sieve( cons( 0 , Y ) ) ) | → | cons#( 0 , sieve( Y ) ) |
active#( sieve( cons( 0 , Y ) ) ) | → | sieve#( Y ) |
active#( sieve( cons( s( N ) , Y ) ) ) | → | cons#( s( N ) , sieve( filter( Y , N , N ) ) ) |
active#( sieve( cons( s( N ) , Y ) ) ) | → | s#( N ) |
active#( sieve( cons( s( N ) , Y ) ) ) | → | sieve#( filter( Y , N , N ) ) |
active#( sieve( cons( s( N ) , Y ) ) ) | → | filter#( Y , N , N ) |
active#( nats( N ) ) | → | cons#( N , nats( s( N ) ) ) |
active#( nats( N ) ) | → | nats#( s( N ) ) |
active#( nats( N ) ) | → | s#( N ) |
active#( zprimes ) | → | sieve#( nats( s( s( 0 ) ) ) ) |
active#( zprimes ) | → | nats#( s( s( 0 ) ) ) |
active#( zprimes ) | → | s#( s( 0 ) ) |
active#( zprimes ) | → | s#( 0 ) |
active#( filter( X1 , X2 , X3 ) ) | → | filter#( active( X1 ) , X2 , X3 ) |
active#( filter( X1 , X2 , X3 ) ) | → | active#( X1 ) |
active#( filter( X1 , X2 , X3 ) ) | → | filter#( X1 , active( X2 ) , X3 ) |
active#( filter( X1 , X2 , X3 ) ) | → | active#( X2 ) |
active#( filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , active( X3 ) ) |
active#( filter( X1 , X2 , X3 ) ) | → | active#( X3 ) |
active#( cons( X1 , X2 ) ) | → | cons#( active( X1 ) , X2 ) |
active#( cons( X1 , X2 ) ) | → | active#( X1 ) |
active#( s( X ) ) | → | s#( active( X ) ) |
active#( s( X ) ) | → | active#( X ) |
active#( sieve( X ) ) | → | sieve#( active( X ) ) |
active#( sieve( X ) ) | → | active#( X ) |
active#( nats( X ) ) | → | nats#( active( X ) ) |
active#( nats( X ) ) | → | active#( X ) |
filter#( mark( X1 ) , X2 , X3 ) | → | filter#( X1 , X2 , X3 ) |
filter#( X1 , mark( X2 ) , X3 ) | → | filter#( X1 , X2 , X3 ) |
filter#( X1 , X2 , mark( X3 ) ) | → | filter#( X1 , X2 , X3 ) |
cons#( mark( X1 ) , X2 ) | → | cons#( X1 , X2 ) |
s#( mark( X ) ) | → | s#( X ) |
sieve#( mark( X ) ) | → | sieve#( X ) |
nats#( mark( X ) ) | → | nats#( X ) |
proper#( filter( X1 , X2 , X3 ) ) | → | filter#( proper( X1 ) , proper( X2 ) , proper( X3 ) ) |
proper#( filter( X1 , X2 , X3 ) ) | → | proper#( X1 ) |
proper#( filter( X1 , X2 , X3 ) ) | → | proper#( X2 ) |
proper#( filter( X1 , X2 , X3 ) ) | → | proper#( X3 ) |
proper#( cons( X1 , X2 ) ) | → | cons#( proper( X1 ) , proper( X2 ) ) |
proper#( cons( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( cons( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( s( X ) ) | → | s#( proper( X ) ) |
proper#( s( X ) ) | → | proper#( X ) |
proper#( sieve( X ) ) | → | sieve#( proper( X ) ) |
proper#( sieve( X ) ) | → | proper#( X ) |
proper#( nats( X ) ) | → | nats#( proper( X ) ) |
proper#( nats( X ) ) | → | proper#( X ) |
filter#( ok( X1 ) , ok( X2 ) , ok( X3 ) ) | → | filter#( X1 , X2 , X3 ) |
cons#( ok( X1 ) , ok( X2 ) ) | → | cons#( X1 , X2 ) |
s#( ok( X ) ) | → | s#( X ) |
sieve#( ok( X ) ) | → | sieve#( X ) |
nats#( ok( X ) ) | → | nats#( X ) |
top#( mark( X ) ) | → | top#( proper( X ) ) |
top#( mark( X ) ) | → | proper#( X ) |
top#( ok( X ) ) | → | top#( active( X ) ) |
top#( ok( X ) ) | → | active#( X ) |
The dependency pairs are split into 8 component(s).
top#( ok( X ) ) | → | top#( active( X ) ) |
top#( mark( X ) ) | → | top#( proper( X ) ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[filter (x1, x2, x3) ] | = | x1 + x2 + x3 + 2 | |
[sieve (x1) ] | = | x1 + 1 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 | |
[nats (x1) ] | = | 2 x1 + 1 | |
[zprimes] | = | 3 | |
[s (x1) ] | = | x1 | |
[top# (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
top#( ok( X ) ) | → | top#( active( X ) ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | 2 x1 | |
[mark (x1) ] | = | 0 | |
[sieve (x1) ] | = | 2 x1 + 2 | |
[active (x1) ] | = | x1 | |
[0] | = | 3 | |
[cons (x1, x2) ] | = | 2 x1 + 2 x2 + 3 | |
[nats (x1) ] | = | 2 x1 | |
[zprimes] | = | 3 | |
[s (x1) ] | = | x1 | |
[top# (x1) ] | = | 3 x1 | |
[ok (x1) ] | = | 2 x1 + 3 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
active#( filter( X1 , X2 , X3 ) ) | → | active#( X2 ) |
active#( filter( X1 , X2 , X3 ) ) | → | active#( X1 ) |
active#( filter( X1 , X2 , X3 ) ) | → | active#( X3 ) |
active#( cons( X1 , X2 ) ) | → | active#( X1 ) |
active#( s( X ) ) | → | active#( X ) |
active#( sieve( X ) ) | → | active#( X ) |
active#( nats( X ) ) | → | active#( X ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | x1 + 2 x2 + 3 x3 + 3 | |
[mark (x1) ] | = | 0 | |
[sieve (x1) ] | = | 2 x1 | |
[active# (x1) ] | = | 2 x1 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 2 | |
[cons (x1, x2) ] | = | 2 x1 + 1 | |
[nats (x1) ] | = | 2 x1 + 2 | |
[zprimes] | = | 0 | |
[s (x1) ] | = | x1 + 2 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( sieve( X ) ) | → | active#( X ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | 2 x1 + 2 | |
[mark (x1) ] | = | 0 | |
[sieve (x1) ] | = | x1 + 1 | |
[active# (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 2 | |
[cons (x1, x2) ] | = | 0 | |
[nats (x1) ] | = | x1 | |
[zprimes] | = | 0 | |
[s (x1) ] | = | 2 | |
[ok (x1) ] | = | x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
proper#( filter( X1 , X2 , X3 ) ) | → | proper#( X2 ) |
proper#( filter( X1 , X2 , X3 ) ) | → | proper#( X1 ) |
proper#( filter( X1 , X2 , X3 ) ) | → | proper#( X3 ) |
proper#( cons( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( cons( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( s( X ) ) | → | proper#( X ) |
proper#( sieve( X ) ) | → | proper#( X ) |
proper#( nats( X ) ) | → | proper#( X ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | x1 + 2 x2 + 2 x3 + 2 | |
[mark (x1) ] | = | 3 | |
[sieve (x1) ] | = | 2 x1 + 2 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 2 | |
[cons (x1, x2) ] | = | 2 x1 + 2 x2 | |
[nats (x1) ] | = | 2 x1 + 2 | |
[zprimes] | = | 2 | |
[proper# (x1) ] | = | 2 x1 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
proper#( cons( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( cons( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( s( X ) ) | → | proper#( X ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | 2 x1 + 3 x2 + 3 x3 + 3 | |
[mark (x1) ] | = | 0 | |
[sieve (x1) ] | = | 1 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 3 | |
[cons (x1, x2) ] | = | 2 x1 + 2 x2 + 3 | |
[nats (x1) ] | = | 0 | |
[zprimes] | = | 3 | |
[proper# (x1) ] | = | 2 x1 | |
[s (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
proper#( s( X ) ) | → | proper#( X ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | 3 x1 | |
[mark (x1) ] | = | 0 | |
[sieve (x1) ] | = | 3 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 + 3 | |
[nats (x1) ] | = | 0 | |
[zprimes] | = | 0 | |
[proper# (x1) ] | = | x1 | |
[s (x1) ] | = | x1 + 1 | |
[ok (x1) ] | = | x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
filter#( X1 , mark( X2 ) , X3 ) | → | filter#( X1 , X2 , X3 ) |
filter#( mark( X1 ) , X2 , X3 ) | → | filter#( X1 , X2 , X3 ) |
filter#( X1 , X2 , mark( X3 ) ) | → | filter#( X1 , X2 , X3 ) |
filter#( ok( X1 ) , ok( X2 ) , ok( X3 ) ) | → | filter#( X1 , X2 , X3 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[filter (x1, x2, x3) ] | = | x1 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 | |
[nats (x1) ] | = | x1 | |
[zprimes] | = | 0 | |
[s (x1) ] | = | x1 | |
[filter# (x1, x2, x3) ] | = | x1 + 3 x2 | |
[ok (x1) ] | = | 2 x1 + 3 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
filter#( X1 , mark( X2 ) , X3 ) | → | filter#( X1 , X2 , X3 ) |
filter#( mark( X1 ) , X2 , X3 ) | → | filter#( X1 , X2 , X3 ) |
filter#( X1 , X2 , mark( X3 ) ) | → | filter#( X1 , X2 , X3 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[filter (x1, x2, x3) ] | = | x1 + 2 x2 + 2 x3 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 + 2 | |
[nats (x1) ] | = | x1 + 2 | |
[zprimes] | = | 2 | |
[s (x1) ] | = | 2 x1 | |
[filter# (x1, x2, x3) ] | = | 2 x1 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
filter#( X1 , mark( X2 ) , X3 ) | → | filter#( X1 , X2 , X3 ) |
filter#( mark( X1 ) , X2 , X3 ) | → | filter#( X1 , X2 , X3 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[filter (x1, x2, x3) ] | = | x1 + 2 x2 + 2 x3 + 2 | |
[sieve (x1) ] | = | x1 + 1 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 | |
[nats (x1) ] | = | x1 + 2 | |
[zprimes] | = | 3 | |
[s (x1) ] | = | x1 | |
[filter# (x1, x2, x3) ] | = | 2 x1 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
filter#( X1 , mark( X2 ) , X3 ) | → | filter#( X1 , X2 , X3 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 2 | |
[filter (x1, x2, x3) ] | = | 2 x1 + 3 x2 + 3 x3 + 2 | |
[sieve (x1) ] | = | x1 + 2 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 | |
[nats (x1) ] | = | 2 x1 + 2 | |
[zprimes] | = | 3 | |
[s (x1) ] | = | x1 | |
[filter# (x1, x2, x3) ] | = | x1 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
cons#( ok( X1 ) , ok( X2 ) ) | → | cons#( X1 , X2 ) |
cons#( mark( X1 ) , X2 ) | → | cons#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 0 | |
[filter (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[sieve (x1) ] | = | x1 + 2 | |
[active (x1) ] | = | 2 x1 | |
[0] | = | 2 | |
[cons (x1, x2) ] | = | 2 x1 + 2 x2 | |
[nats (x1) ] | = | 2 x1 | |
[zprimes] | = | 2 | |
[cons# (x1, x2) ] | = | 2 x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[ok (x1) ] | = | x1 + 2 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
cons#( mark( X1 ) , X2 ) | → | cons#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[filter (x1, x2, x3) ] | = | x1 + x2 + x3 | |
[sieve (x1) ] | = | x1 + 3 | |
[active (x1) ] | = | x1 + 1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 | |
[nats (x1) ] | = | x1 | |
[zprimes] | = | 3 | |
[cons# (x1, x2) ] | = | x1 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
s#( ok( X ) ) | → | s#( X ) |
s#( mark( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[filter (x1, x2, x3) ] | = | x1 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 + 2 | |
[0] | = | 2 | |
[cons (x1, x2) ] | = | x1 | |
[nats (x1) ] | = | x1 | |
[s# (x1) ] | = | 2 x1 | |
[zprimes] | = | 3 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | x1 + 1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
s#( mark( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[filter (x1, x2, x3) ] | = | x1 + x2 + x3 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 + 1 | |
[nats (x1) ] | = | x1 | |
[s# (x1) ] | = | x1 | |
[zprimes] | = | 1 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
sieve#( ok( X ) ) | → | sieve#( X ) |
sieve#( mark( X ) ) | → | sieve#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[filter (x1, x2, x3) ] | = | x1 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 + 2 | |
[0] | = | 2 | |
[cons (x1, x2) ] | = | x1 | |
[nats (x1) ] | = | x1 | |
[zprimes] | = | 3 | |
[sieve# (x1) ] | = | 2 x1 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | x1 + 1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
sieve#( mark( X ) ) | → | sieve#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[filter (x1, x2, x3) ] | = | x1 + x2 + x3 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 + 1 | |
[nats (x1) ] | = | x1 | |
[zprimes] | = | 1 | |
[sieve# (x1) ] | = | x1 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
nats#( ok( X ) ) | → | nats#( X ) |
nats#( mark( X ) ) | → | nats#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[filter (x1, x2, x3) ] | = | x1 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 + 2 | |
[0] | = | 2 | |
[cons (x1, x2) ] | = | x1 | |
[nats (x1) ] | = | x1 | |
[nats# (x1) ] | = | 2 x1 | |
[zprimes] | = | 3 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | x1 + 1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
nats#( mark( X ) ) | → | nats#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[filter (x1, x2, x3) ] | = | x1 + x2 + x3 | |
[sieve (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 + 1 | |
[nats (x1) ] | = | x1 | |
[nats# (x1) ] | = | x1 | |
[zprimes] | = | 1 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.