a__filter#( cons( X , Y ) , s( N ) , M ) | → | mark#( X ) |
a__sieve#( cons( s( N ) , Y ) ) | → | mark#( N ) |
a__nats#( N ) | → | mark#( N ) |
a__zprimes# | → | a__sieve#( a__nats( s( s( 0 ) ) ) ) |
a__zprimes# | → | a__nats#( s( s( 0 ) ) ) |
mark#( filter( X1 , X2 , X3 ) ) | → | a__filter#( mark( X1 ) , mark( X2 ) , mark( X3 ) ) |
mark#( filter( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( filter( X1 , X2 , X3 ) ) | → | mark#( X2 ) |
mark#( filter( X1 , X2 , X3 ) ) | → | mark#( X3 ) |
mark#( sieve( X ) ) | → | a__sieve#( mark( X ) ) |
mark#( sieve( X ) ) | → | mark#( X ) |
mark#( nats( X ) ) | → | a__nats#( mark( X ) ) |
mark#( nats( X ) ) | → | mark#( X ) |
mark#( zprimes ) | → | a__zprimes# |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__nats# (x1) ] | = | 2 x1 | |
[filter (x1, x2, x3) ] | = | x1 + x2 + x3 + 2 | |
[mark (x1) ] | = | x1 | |
[sieve (x1) ] | = | 2 x1 + 2 | |
[a__sieve# (x1) ] | = | x1 | |
[a__filter# (x1, x2, x3) ] | = | x1 + 3 | |
[a__zprimes#] | = | 0 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[a__sieve (x1) ] | = | 2 x1 + 2 | |
[cons (x1, x2) ] | = | 2 x1 | |
[nats (x1) ] | = | 2 x1 | |
[a__zprimes] | = | 2 | |
[zprimes] | = | 2 | |
[a__filter (x1, x2, x3) ] | = | x1 + x2 + x3 + 2 | |
[s (x1) ] | = | 2 x1 | |
[a__nats (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__sieve#( cons( s( N ) , Y ) ) | → | mark#( N ) |
a__nats#( N ) | → | mark#( N ) |
a__zprimes# | → | a__sieve#( a__nats( s( s( 0 ) ) ) ) |
a__zprimes# | → | a__nats#( s( s( 0 ) ) ) |
mark#( nats( X ) ) | → | a__nats#( mark( X ) ) |
mark#( nats( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
mark#( nats( X ) ) | → | a__nats#( mark( X ) ) |
a__nats#( N ) | → | mark#( N ) |
mark#( nats( X ) ) | → | mark#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__nats# (x1) ] | = | 2 x1 + 1 | |
[mark (x1) ] | = | x1 | |
[filter (x1, x2, x3) ] | = | x1 + x2 | |
[sieve (x1) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[nats (x1) ] | = | x1 + 2 | |
[cons (x1, x2) ] | = | x1 | |
[a__sieve (x1) ] | = | x1 | |
[a__zprimes] | = | 2 | |
[zprimes] | = | 2 | |
[a__filter (x1, x2, x3) ] | = | x1 + x2 | |
[s (x1) ] | = | 2 x1 | |
[a__nats (x1) ] | = | x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | x1 | |
[mark (x1) ] | = | x1 | |
[sieve (x1) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 | |
[a__sieve (x1) ] | = | x1 | |
[nats (x1) ] | = | x1 | |
[a__zprimes] | = | 3 | |
[a__filter (x1, x2, x3) ] | = | x1 | |
[zprimes] | = | 3 | |
[s (x1) ] | = | 2 x1 + 1 | |
[a__nats (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 1 | |
[mark (x1) ] | = | 2 x1 | |
[sieve (x1) ] | = | 1 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 1 | |
[cons (x1, x2) ] | = | x1 + 1 | |
[a__sieve (x1) ] | = | 2 | |
[nats (x1) ] | = | 2 x1 + 2 | |
[a__zprimes] | = | 2 | |
[a__filter (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 | |
[zprimes] | = | 2 | |
[s (x1) ] | = | 1 | |
[a__nats (x1) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.