Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | cons : symb | filter : symb | nats : symb | s : symb | sieve : symb | zprimes : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.cons => 1 | M.filter => 3 | M.nats => 1 | M.s => 1 | M.sieve => 1 | M.zprimes => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition cons x1 := F0 M.cons (Vcons x1 Vnil). Definition filter x3 x2 x1 := F0 M.filter (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition nats x1 := F0 M.nats (Vcons x1 Vnil). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition sieve x1 := F0 M.sieve (Vcons x1 Vnil). Definition zprimes := F0 M.zprimes Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.filter (S0.cons (V0 0)) S0._0_1 (V0 1)) (S0.cons S0._0_1) :: R0 (S0.filter (S0.cons (V0 0)) (S0.s (V0 1)) (V0 2)) (S0.cons (V0 0)) :: R0 (S0.sieve (S0.cons S0._0_1)) (S0.cons S0._0_1) :: R0 (S0.sieve (S0.cons (S0.s (V0 0)))) (S0.cons (S0.s (V0 0))) :: R0 (S0.nats (V0 0)) (S0.cons (V0 0)) :: R0 S0.zprimes (S0.sieve (S0.nats (S0.s (S0.s S0._0_1)))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hcons x1 := F1 (hd_symb s1_p M.cons) (Vcons x1 Vnil). Definition cons x1 := F1 (int_symb s1_p M.cons) (Vcons x1 Vnil). Definition hfilter x3 x2 x1 := F1 (hd_symb s1_p M.filter) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition filter x3 x2 x1 := F1 (int_symb s1_p M.filter) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hnats x1 := F1 (hd_symb s1_p M.nats) (Vcons x1 Vnil). Definition nats x1 := F1 (int_symb s1_p M.nats) (Vcons x1 Vnil). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition hsieve x1 := F1 (hd_symb s1_p M.sieve) (Vcons x1 Vnil). Definition sieve x1 := F1 (int_symb s1_p M.sieve) (Vcons x1 Vnil). Definition hzprimes := F1 (hd_symb s1_p M.zprimes) Vnil. Definition zprimes := F1 (int_symb s1_p M.zprimes) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hzprimes) (S1.hnats (S1.s (S1.s (S1._0_1)))) :: nil) :: ( R1 (S1.hzprimes) (S1.hsieve (S1.nats (S1.s (S1.s (S1._0_1))))) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. Qed.