filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
sieve#( cons( 0 , Y ) ) | → | activate#( Y ) |
sieve#( cons( s( N ) , Y ) ) | → | filter#( activate( Y ) , N , N ) |
sieve#( cons( s( N ) , Y ) ) | → | activate#( Y ) |
zprimes# | → | sieve#( nats( s( s( 0 ) ) ) ) |
zprimes# | → | nats#( s( s( 0 ) ) ) |
activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
activate#( n__sieve( X ) ) | → | sieve#( X ) |
activate#( n__nats( X ) ) | → | nats#( X ) |
The dependency pairs are split into 1 component(s).
activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
activate#( n__sieve( X ) ) | → | sieve#( X ) |
sieve#( cons( 0 , Y ) ) | → | activate#( Y ) |
sieve#( cons( s( N ) , Y ) ) | → | filter#( activate( Y ) , N , N ) |
filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
sieve#( cons( s( N ) , Y ) ) | → | activate#( Y ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | x1 | |
[sieve (x1) ] | = | 2 x1 + 1 | |
[n__filter (x1, x2, x3) ] | = | x1 | |
[n__nats (x1) ] | = | 0 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 | |
[nats (x1) ] | = | 0 | |
[activate (x1) ] | = | x1 | |
[n__sieve (x1) ] | = | 2 x1 + 1 | |
[zprimes] | = | 2 | |
[activate# (x1) ] | = | 2 x1 | |
[sieve# (x1) ] | = | 2 x1 | |
[s (x1) ] | = | 0 | |
[filter# (x1, x2, x3) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
sieve#( cons( 0 , Y ) ) | → | activate#( Y ) |
sieve#( cons( s( N ) , Y ) ) | → | filter#( activate( Y ) , N , N ) |
filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
sieve#( cons( s( N ) , Y ) ) | → | activate#( Y ) |
The dependency pairs are split into 1 component(s).
filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
Linear polynomial interpretation over the naturals
[filter (x1, x2, x3) ] | = | 2 x1 + x2 | |
[sieve (x1) ] | = | 2 | |
[n__filter (x1, x2, x3) ] | = | x1 + x2 | |
[n__nats (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | x1 + x2 + 2 | |
[nats (x1) ] | = | 2 x1 + 2 | |
[activate (x1) ] | = | 2 x1 + 2 | |
[n__sieve (x1) ] | = | 0 | |
[zprimes] | = | 2 | |
[activate# (x1) ] | = | x1 | |
[s (x1) ] | = | 0 | |
[filter# (x1, x2, x3) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
The dependency pairs are split into 0 component(s).