| filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
| filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
| sieve#( cons( 0 , Y ) ) | → | activate#( Y ) |
| sieve#( cons( s( N ) , Y ) ) | → | filter#( activate( Y ) , N , N ) |
| sieve#( cons( s( N ) , Y ) ) | → | activate#( Y ) |
| zprimes# | → | sieve#( nats( s( s( 0 ) ) ) ) |
| zprimes# | → | nats#( s( s( 0 ) ) ) |
| activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
| activate#( n__sieve( X ) ) | → | sieve#( X ) |
| activate#( n__nats( X ) ) | → | nats#( X ) |
The dependency pairs are split into 1 component(s).
| activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
| filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
| activate#( n__sieve( X ) ) | → | sieve#( X ) |
| sieve#( cons( 0 , Y ) ) | → | activate#( Y ) |
| sieve#( cons( s( N ) , Y ) ) | → | filter#( activate( Y ) , N , N ) |
| filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
| sieve#( cons( s( N ) , Y ) ) | → | activate#( Y ) |
Linear polynomial interpretation over the naturals
| [filter (x1, x2, x3) ] | = | x1 | |
| [sieve (x1) ] | = | 2 x1 + 1 | |
| [n__filter (x1, x2, x3) ] | = | x1 | |
| [n__nats (x1) ] | = | 0 | |
| [0] | = | 0 | |
| [cons (x1, x2) ] | = | x1 | |
| [nats (x1) ] | = | 0 | |
| [activate (x1) ] | = | x1 | |
| [n__sieve (x1) ] | = | 2 x1 + 1 | |
| [zprimes] | = | 2 | |
| [activate# (x1) ] | = | 2 x1 | |
| [sieve# (x1) ] | = | 2 x1 | |
| [s (x1) ] | = | 0 | |
| [filter# (x1, x2, x3) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
| filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
| sieve#( cons( 0 , Y ) ) | → | activate#( Y ) |
| sieve#( cons( s( N ) , Y ) ) | → | filter#( activate( Y ) , N , N ) |
| filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
| sieve#( cons( s( N ) , Y ) ) | → | activate#( Y ) |
The dependency pairs are split into 1 component(s).
| filter#( cons( X , Y ) , 0 , M ) | → | activate#( Y ) |
| activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
| filter#( cons( X , Y ) , s( N ) , M ) | → | activate#( Y ) |
Linear polynomial interpretation over the naturals
| [filter (x1, x2, x3) ] | = | 2 x1 + x2 | |
| [sieve (x1) ] | = | 2 | |
| [n__filter (x1, x2, x3) ] | = | x1 + x2 | |
| [n__nats (x1) ] | = | 2 x1 | |
| [0] | = | 0 | |
| [cons (x1, x2) ] | = | x1 + x2 + 2 | |
| [nats (x1) ] | = | 2 x1 + 2 | |
| [activate (x1) ] | = | 2 x1 + 2 | |
| [n__sieve (x1) ] | = | 0 | |
| [zprimes] | = | 2 | |
| [activate# (x1) ] | = | x1 | |
| [s (x1) ] | = | 0 | |
| [filter# (x1, x2, x3) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| activate#( n__filter( X1 , X2 , X3 ) ) | → | filter#( X1 , X2 , X3 ) |
The dependency pairs are split into 0 component(s).