a__f#( a , X , X ) | → | a__f#( X , a__b , b ) |
a__f#( a , X , X ) | → | a__b# |
mark#( f( X1 , X2 , X3 ) ) | → | a__f#( X1 , mark( X2 ) , X3 ) |
mark#( f( X1 , X2 , X3 ) ) | → | mark#( X2 ) |
mark#( b ) | → | a__b# |
The dependency pairs are split into 2 component(s).
mark#( f( X1 , X2 , X3 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[b] | = | 0 | |
[a] | = | 0 | |
[mark (x1) ] | = | x1 | |
[f (x1, x2, x3) ] | = | 2 x1 + 2 | |
[mark# (x1) ] | = | 3 x1 | |
[a__f (x1, x2, x3) ] | = | 2 x1 + 2 | |
[a__b] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
a__f#( a , X , X ) | → | a__f#( X , a__b , b ) |
Linear polynomial interpretation over the naturals
[b] | = | 0 | |
[a] | = | 3 | |
[mark (x1) ] | = | 2 x1 + 3 | |
[f (x1, x2, x3) ] | = | x1 | |
[a__f# (x1, x2, x3) ] | = | 3 x1 + 2 x2 + 2 x3 | |
[a__f (x1, x2, x3) ] | = | 2 x1 + 2 | |
[a__b] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.