The
1st
component contains the
pair(s)
activate#(
n__f(
X
)
)
|
→ |
activate#(
X
)
|
activate#(
n__h(
X
)
)
|
→ |
activate#(
X
)
|
1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[h
(x1)
]
|
= |
x1
+
3
|
[activate#
(x1)
]
|
= |
x1
|
[f
(x1)
]
|
= |
x1
|
[n__h
(x1)
]
|
= |
x1
+
3
|
[n__f
(x1)
]
|
= |
x1
|
[g
(x1)
]
|
= |
0
|
[activate
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
activate#(
n__f(
X
)
)
|
→ |
activate#(
X
)
|
1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[h
(x1)
]
|
= |
3
|
[activate#
(x1)
]
|
= |
x1
|
[f
(x1)
]
|
= |
2
x1
+
3
|
[n__h
(x1)
]
|
= |
2
|
[n__f
(x1)
]
|
= |
2
x1
+
3
|
[g
(x1)
]
|
= |
3
|
[activate
(x1)
]
|
= |
2
x1
+
2
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.1.1.1: P is empty
All dependency pairs have been removed.