Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | f : symb | g : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.f => 1 | M.g => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition f x1 := F0 M.f (Vcons x1 Vnil). Definition g := F0 M.g Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.f (V0 0)) S0.g :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hf x1 := F1 (hd_symb s1_p M.f) (Vcons x1 Vnil). Definition f x1 := F1 (int_symb s1_p M.f) (Vcons x1 Vnil). Definition hg := F1 (hd_symb s1_p M.g) Vnil. Definition g := F1 (int_symb s1_p M.g) Vnil. End S1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. termination_trivial. Qed.