a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
a__U11#( tt , L ) | → | mark#( L ) |
a__and#( tt , X ) | → | mark#( X ) |
a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
a__isNatIList#( V ) | → | a__isNatList#( V ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
a__length#( cons( N , L ) ) | → | a__and#( a__isNatList( L ) , isNat( N ) ) |
a__length#( cons( N , L ) ) | → | a__isNatList#( L ) |
mark#( zeros ) | → | a__zeros# |
mark#( U11( X1 , X2 ) ) | → | a__U11#( mark( X1 ) , X2 ) |
mark#( U11( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( length( X ) ) | → | a__length#( mark( X ) ) |
mark#( length( X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
a__length#( cons( N , L ) ) | → | a__and#( a__isNatList( L ) , isNat( N ) ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( U11( X1 , X2 ) ) | → | a__U11#( mark( X1 ) , X2 ) |
a__U11#( tt , L ) | → | mark#( L ) |
mark#( U11( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( length( X ) ) | → | a__length#( mark( X ) ) |
a__length#( cons( N , L ) ) | → | a__isNatList#( L ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
mark#( length( X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
a__isNatIList#( V ) | → | a__isNatList#( V ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__isNatList# (x1) ] | = | 0 | |
[length (x1) ] | = | x1 + 1 | |
[a__length (x1) ] | = | x1 + 1 | |
[a__isNatIList (x1) ] | = | 0 | |
[0] | = | 0 | |
[isNatList (x1) ] | = | 0 | |
[a__length# (x1) ] | = | x1 + 1 | |
[cons (x1, x2) ] | = | x1 + 3 x2 | |
[and (x1, x2) ] | = | 2 x1 + 2 x2 | |
[a__U11# (x1, x2) ] | = | 2 x1 + 1 | |
[s (x1) ] | = | x1 | |
[isNatIList (x1) ] | = | 0 | |
[a__U11 (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[mark (x1) ] | = | 2 x1 | |
[zeros] | = | 0 | |
[a__zeros] | = | 0 | |
[a__and# (x1, x2) ] | = | 2 x1 | |
[mark# (x1) ] | = | 2 x1 | |
[nil] | = | 0 | |
[a__isNatIList# (x1) ] | = | 0 | |
[a__isNatList (x1) ] | = | 0 | |
[tt] | = | 0 | |
[a__isNat# (x1) ] | = | 0 | |
[a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
[isNat (x1) ] | = | 0 | |
[U11 (x1, x2) ] | = | x1 + x2 + 1 | |
[a__isNat (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
a__and#( tt , X ) | → | mark#( X ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
a__isNatIList#( V ) | → | a__isNatList#( V ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 2 component(s).
a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
Linear polynomial interpretation over the naturals
[a__U11 (x1, x2) ] | = | x1 + x2 + 1 | |
[length (x1) ] | = | x1 | |
[mark (x1) ] | = | x1 + 2 | |
[zeros] | = | 0 | |
[a__length (x1) ] | = | x1 | |
[a__isNatIList (x1) ] | = | 2 x1 + 2 | |
[a__zeros] | = | 2 | |
[0] | = | 1 | |
[nil] | = | 2 | |
[isNatList (x1) ] | = | x1 | |
[a__length# (x1) ] | = | x1 | |
[cons (x1, x2) ] | = | x1 + 3 x2 + 1 | |
[a__isNatList (x1) ] | = | x1 | |
[tt] | = | 2 | |
[a__and (x1, x2) ] | = | x1 + x2 | |
[isNat (x1) ] | = | x1 | |
[U11 (x1, x2) ] | = | x1 + x2 + 1 | |
[and (x1, x2) ] | = | x1 + x2 | |
[a__U11# (x1, x2) ] | = | x1 + 2 x2 | |
[s (x1) ] | = | x1 | |
[a__isNat (x1) ] | = | x1 + 1 | |
[isNatIList (x1) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
The dependency pairs are split into 0 component(s).
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
a__isNatIList#( V ) | → | a__isNatList#( V ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__isNatList# (x1) ] | = | 0 | |
[length (x1) ] | = | 0 | |
[a__length (x1) ] | = | 0 | |
[a__isNatIList (x1) ] | = | 0 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 + 2 | |
[isNatList (x1) ] | = | 0 | |
[and (x1, x2) ] | = | x1 + x2 | |
[s (x1) ] | = | 2 x1 | |
[isNatIList (x1) ] | = | 0 | |
[a__U11 (x1, x2) ] | = | 0 | |
[zeros] | = | 2 | |
[mark (x1) ] | = | x1 | |
[a__zeros] | = | 2 | |
[a__and# (x1, x2) ] | = | 2 x1 | |
[mark# (x1) ] | = | 2 x1 | |
[a__isNatIList# (x1) ] | = | 0 | |
[nil] | = | 1 | |
[a__isNatList (x1) ] | = | 0 | |
[a__isNat# (x1) ] | = | 0 | |
[tt] | = | 0 | |
[a__and (x1, x2) ] | = | x1 + x2 | |
[isNat (x1) ] | = | 0 | |
[U11 (x1, x2) ] | = | 0 | |
[a__isNat (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
a__isNatIList#( V ) | → | a__isNatList#( V ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__isNatList# (x1) ] | = | 0 | |
[length (x1) ] | = | 0 | |
[a__length (x1) ] | = | 0 | |
[a__isNatIList (x1) ] | = | 2 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 0 | |
[isNatList (x1) ] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 + x2 | |
[s (x1) ] | = | 2 x1 | |
[isNatIList (x1) ] | = | 1 | |
[a__U11 (x1, x2) ] | = | 0 | |
[zeros] | = | 0 | |
[mark (x1) ] | = | 2 x1 | |
[a__zeros] | = | 0 | |
[a__and# (x1, x2) ] | = | x1 + x2 | |
[mark# (x1) ] | = | x1 | |
[a__isNatIList# (x1) ] | = | 1 | |
[nil] | = | 1 | |
[a__isNatList (x1) ] | = | 0 | |
[a__isNat# (x1) ] | = | 0 | |
[tt] | = | 0 | |
[a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
[isNat (x1) ] | = | 0 | |
[U11 (x1, x2) ] | = | 0 | |
[a__isNat (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__isNatList# (x1) ] | = | 2 x1 | |
[length (x1) ] | = | x1 + 2 | |
[a__length (x1) ] | = | x1 + 2 | |
[a__isNatIList (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[cons (x1, x2) ] | = | 2 x1 + 3 x2 | |
[isNatList (x1) ] | = | 2 x1 | |
[and (x1, x2) ] | = | 2 x1 + 2 x2 | |
[s (x1) ] | = | x1 | |
[isNatIList (x1) ] | = | x1 | |
[a__U11 (x1, x2) ] | = | 3 x1 + 2 | |
[zeros] | = | 0 | |
[mark (x1) ] | = | 2 x1 | |
[a__zeros] | = | 0 | |
[a__and# (x1, x2) ] | = | x1 + 2 x2 | |
[mark# (x1) ] | = | x1 | |
[a__isNatIList# (x1) ] | = | x1 | |
[nil] | = | 1 | |
[a__isNatList (x1) ] | = | 2 x1 | |
[a__isNat# (x1) ] | = | 2 x1 | |
[tt] | = | 0 | |
[a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
[isNat (x1) ] | = | 2 x1 | |
[U11 (x1, x2) ] | = | 2 x1 + 1 | |
[a__isNat (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 2 component(s).
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__U11 (x1, x2) ] | = | 0 | |
[a__isNatList# (x1) ] | = | 0 | |
[length (x1) ] | = | 0 | |
[zeros] | = | 1 | |
[mark (x1) ] | = | 2 x1 | |
[a__length (x1) ] | = | 0 | |
[a__isNatIList (x1) ] | = | 2 x1 + 2 | |
[a__zeros] | = | 2 | |
[a__and# (x1, x2) ] | = | x1 | |
[mark# (x1) ] | = | x1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[a__isNatIList# (x1) ] | = | x1 | |
[cons (x1, x2) ] | = | x1 + 1 | |
[isNatList (x1) ] | = | 0 | |
[a__isNatList (x1) ] | = | 0 | |
[tt] | = | 0 | |
[a__and (x1, x2) ] | = | x1 + 2 x2 | |
[isNat (x1) ] | = | 0 | |
[U11 (x1, x2) ] | = | 0 | |
[and (x1, x2) ] | = | x1 + x2 | |
[s (x1) ] | = | 2 x1 | |
[a__isNat (x1) ] | = | 0 | |
[isNatIList (x1) ] | = | x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__U11 (x1, x2) ] | = | x1 + 2 x2 | |
[a__isNatList# (x1) ] | = | x1 + 1 | |
[length (x1) ] | = | x1 | |
[mark (x1) ] | = | x1 + 1 | |
[zeros] | = | 0 | |
[a__length (x1) ] | = | x1 | |
[a__isNatIList (x1) ] | = | 2 x1 + 2 | |
[a__zeros] | = | 1 | |
[a__and# (x1, x2) ] | = | x1 + x2 | |
[mark# (x1) ] | = | x1 + 1 | |
[0] | = | 1 | |
[nil] | = | 1 | |
[cons (x1, x2) ] | = | x1 + 3 x2 | |
[isNatList (x1) ] | = | x1 | |
[a__isNatList (x1) ] | = | x1 | |
[tt] | = | 1 | |
[a__and (x1, x2) ] | = | x1 + x2 | |
[isNat (x1) ] | = | x1 | |
[U11 (x1, x2) ] | = | x1 + 2 x2 | |
[and (x1, x2) ] | = | x1 + x2 | |
[s (x1) ] | = | x1 | |
[a__isNat (x1) ] | = | x1 | |
[isNatIList (x1) ] | = | 2 x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__U11 (x1, x2) ] | = | 3 x1 + 2 | |
[length (x1) ] | = | x1 | |
[mark (x1) ] | = | 2 x1 + 2 | |
[zeros] | = | 0 | |
[a__length (x1) ] | = | x1 | |
[a__isNatIList (x1) ] | = | 2 x1 + 3 | |
[a__zeros] | = | 2 | |
[a__and# (x1, x2) ] | = | x1 + 3 x2 | |
[mark# (x1) ] | = | 2 x1 + 3 | |
[0] | = | 0 | |
[nil] | = | 2 | |
[cons (x1, x2) ] | = | 2 x1 + 3 x2 + 2 | |
[isNatList (x1) ] | = | 2 x1 | |
[a__isNatList (x1) ] | = | 2 x1 | |
[tt] | = | 3 | |
[a__and (x1, x2) ] | = | x1 + 2 x2 | |
[isNat (x1) ] | = | x1 + 2 | |
[U11 (x1, x2) ] | = | 2 x1 + 2 | |
[and (x1, x2) ] | = | x1 + 2 x2 | |
[s (x1) ] | = | x1 | |
[a__isNat (x1) ] | = | 2 x1 + 3 | |
[isNatIList (x1) ] | = | x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
mark#( s( X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[a__U11 (x1, x2) ] | = | x1 + 1 | |
[length (x1) ] | = | x1 | |
[zeros] | = | 0 | |
[mark (x1) ] | = | x1 + 1 | |
[a__length (x1) ] | = | x1 | |
[a__isNatIList (x1) ] | = | 2 x1 + 1 | |
[a__zeros] | = | 1 | |
[mark# (x1) ] | = | 3 x1 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[isNatList (x1) ] | = | x1 | |
[a__isNatList (x1) ] | = | x1 | |
[cons (x1, x2) ] | = | x1 + x2 + 1 | |
[tt] | = | 0 | |
[a__and (x1, x2) ] | = | x1 + x2 + 1 | |
[isNat (x1) ] | = | x1 | |
[U11 (x1, x2) ] | = | x1 | |
[and (x1, x2) ] | = | x1 + x2 + 1 | |
[a__isNat (x1) ] | = | x1 | |
[s (x1) ] | = | x1 | |
[isNatIList (x1) ] | = | 2 x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a__U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[zeros] | = | 0 | |
[mark (x1) ] | = | 2 x1 + 1 | |
[length (x1) ] | = | x1 + 1 | |
[a__length (x1) ] | = | x1 + 1 | |
[a__isNatIList (x1) ] | = | 2 x1 + 1 | |
[a__zeros] | = | 1 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[nil] | = | 2 | |
[isNatList (x1) ] | = | x1 | |
[a__isNatList (x1) ] | = | x1 | |
[cons (x1, x2) ] | = | 2 x1 + 3 x2 + 1 | |
[tt] | = | 1 | |
[a__and (x1, x2) ] | = | x1 + 2 x2 | |
[isNat (x1) ] | = | x1 | |
[U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[and (x1, x2) ] | = | x1 + x2 | |
[a__isNat (x1) ] | = | 2 x1 + 1 | |
[s (x1) ] | = | x1 + 1 | |
[isNatIList (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
Linear polynomial interpretation over the naturals
[a__U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[zeros] | = | 0 | |
[mark (x1) ] | = | 2 x1 + 1 | |
[length (x1) ] | = | x1 + 1 | |
[a__length (x1) ] | = | x1 + 1 | |
[a__isNatIList (x1) ] | = | 2 x1 + 1 | |
[a__zeros] | = | 1 | |
[0] | = | 0 | |
[nil] | = | 2 | |
[isNatList (x1) ] | = | x1 | |
[a__isNatList (x1) ] | = | x1 | |
[cons (x1, x2) ] | = | 2 x1 + 3 x2 + 1 | |
[tt] | = | 1 | |
[a__isNat# (x1) ] | = | 2 x1 | |
[a__and (x1, x2) ] | = | x1 + 2 x2 | |
[isNat (x1) ] | = | x1 | |
[U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[and (x1, x2) ] | = | x1 + x2 | |
[a__isNat (x1) ] | = | 2 x1 + 1 | |
[s (x1) ] | = | x1 + 1 | |
[isNatIList (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.