| a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
| a__U11#( tt , L ) | → | mark#( L ) |
| a__and#( tt , X ) | → | mark#( X ) |
| a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
| a__isNatIList#( V ) | → | a__isNatList#( V ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
| a__length#( cons( N , L ) ) | → | a__and#( a__isNatList( L ) , isNat( N ) ) |
| a__length#( cons( N , L ) ) | → | a__isNatList#( L ) |
| mark#( zeros ) | → | a__zeros# |
| mark#( U11( X1 , X2 ) ) | → | a__U11#( mark( X1 ) , X2 ) |
| mark#( U11( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( length( X ) ) | → | a__length#( mark( X ) ) |
| mark#( length( X ) ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
| a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
| a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
| a__length#( cons( N , L ) ) | → | a__and#( a__isNatList( L ) , isNat( N ) ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( U11( X1 , X2 ) ) | → | a__U11#( mark( X1 ) , X2 ) |
| a__U11#( tt , L ) | → | mark#( L ) |
| mark#( U11( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( length( X ) ) | → | a__length#( mark( X ) ) |
| a__length#( cons( N , L ) ) | → | a__isNatList#( L ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
| mark#( length( X ) ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| a__isNatIList#( V ) | → | a__isNatList#( V ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__isNatList# (x1) ] | = | 0 | |
| [length (x1) ] | = | x1 + 1 | |
| [a__length (x1) ] | = | x1 + 1 | |
| [a__isNatIList (x1) ] | = | 0 | |
| [0] | = | 0 | |
| [isNatList (x1) ] | = | 0 | |
| [a__length# (x1) ] | = | x1 + 1 | |
| [cons (x1, x2) ] | = | x1 + 3 x2 | |
| [and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [a__U11# (x1, x2) ] | = | 2 x1 + 1 | |
| [s (x1) ] | = | x1 | |
| [isNatIList (x1) ] | = | 0 | |
| [a__U11 (x1, x2) ] | = | x1 + 2 x2 + 1 | |
| [mark (x1) ] | = | 2 x1 | |
| [zeros] | = | 0 | |
| [a__zeros] | = | 0 | |
| [a__and# (x1, x2) ] | = | 2 x1 | |
| [mark# (x1) ] | = | 2 x1 | |
| [nil] | = | 0 | |
| [a__isNatIList# (x1) ] | = | 0 | |
| [a__isNatList (x1) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__isNat# (x1) ] | = | 0 | |
| [a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [isNat (x1) ] | = | 0 | |
| [U11 (x1, x2) ] | = | x1 + x2 + 1 | |
| [a__isNat (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
| a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
| a__and#( tt , X ) | → | mark#( X ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| a__isNatIList#( V ) | → | a__isNatList#( V ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 2 component(s).
| a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
| a__length#( cons( N , L ) ) | → | a__U11#( a__and( a__isNatList( L ) , isNat( N ) ) , L ) |
Linear polynomial interpretation over the naturals
| [a__U11 (x1, x2) ] | = | x1 + x2 + 1 | |
| [length (x1) ] | = | x1 | |
| [mark (x1) ] | = | x1 + 2 | |
| [zeros] | = | 0 | |
| [a__length (x1) ] | = | x1 | |
| [a__isNatIList (x1) ] | = | 2 x1 + 2 | |
| [a__zeros] | = | 2 | |
| [0] | = | 1 | |
| [nil] | = | 2 | |
| [isNatList (x1) ] | = | x1 | |
| [a__length# (x1) ] | = | x1 | |
| [cons (x1, x2) ] | = | x1 + 3 x2 + 1 | |
| [a__isNatList (x1) ] | = | x1 | |
| [tt] | = | 2 | |
| [a__and (x1, x2) ] | = | x1 + x2 | |
| [isNat (x1) ] | = | x1 | |
| [U11 (x1, x2) ] | = | x1 + x2 + 1 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [a__U11# (x1, x2) ] | = | x1 + 2 x2 | |
| [s (x1) ] | = | x1 | |
| [a__isNat (x1) ] | = | x1 + 1 | |
| [isNatIList (x1) ] | = | 2 x1 + 2 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__U11#( tt , L ) | → | a__length#( mark( L ) ) |
The dependency pairs are split into 0 component(s).
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| a__isNatIList#( V ) | → | a__isNatList#( V ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| mark#( cons( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__isNatList# (x1) ] | = | 0 | |
| [length (x1) ] | = | 0 | |
| [a__length (x1) ] | = | 0 | |
| [a__isNatIList (x1) ] | = | 0 | |
| [0] | = | 0 | |
| [cons (x1, x2) ] | = | 2 x1 + 2 | |
| [isNatList (x1) ] | = | 0 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | 2 x1 | |
| [isNatIList (x1) ] | = | 0 | |
| [a__U11 (x1, x2) ] | = | 0 | |
| [zeros] | = | 2 | |
| [mark (x1) ] | = | x1 | |
| [a__zeros] | = | 2 | |
| [a__and# (x1, x2) ] | = | 2 x1 | |
| [mark# (x1) ] | = | 2 x1 | |
| [a__isNatIList# (x1) ] | = | 0 | |
| [nil] | = | 1 | |
| [a__isNatList (x1) ] | = | 0 | |
| [a__isNat# (x1) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | x1 + x2 | |
| [isNat (x1) ] | = | 0 | |
| [U11 (x1, x2) ] | = | 0 | |
| [a__isNat (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| a__isNatIList#( V ) | → | a__isNatList#( V ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__isNatList# (x1) ] | = | 0 | |
| [length (x1) ] | = | 0 | |
| [a__length (x1) ] | = | 0 | |
| [a__isNatIList (x1) ] | = | 2 | |
| [0] | = | 0 | |
| [cons (x1, x2) ] | = | 0 | |
| [isNatList (x1) ] | = | 0 | |
| [and (x1, x2) ] | = | 2 x1 + x2 | |
| [s (x1) ] | = | 2 x1 | |
| [isNatIList (x1) ] | = | 1 | |
| [a__U11 (x1, x2) ] | = | 0 | |
| [zeros] | = | 0 | |
| [mark (x1) ] | = | 2 x1 | |
| [a__zeros] | = | 0 | |
| [a__and# (x1, x2) ] | = | x1 + x2 | |
| [mark# (x1) ] | = | x1 | |
| [a__isNatIList# (x1) ] | = | 1 | |
| [nil] | = | 1 | |
| [a__isNatList (x1) ] | = | 0 | |
| [a__isNat# (x1) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [isNat (x1) ] | = | 0 | |
| [U11 (x1, x2) ] | = | 0 | |
| [a__isNat (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| a__isNat#( length( V1 ) ) | → | a__isNatList#( V1 ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__isNatList# (x1) ] | = | 2 x1 | |
| [length (x1) ] | = | x1 + 2 | |
| [a__length (x1) ] | = | x1 + 2 | |
| [a__isNatIList (x1) ] | = | 2 x1 | |
| [0] | = | 0 | |
| [cons (x1, x2) ] | = | 2 x1 + 3 x2 | |
| [isNatList (x1) ] | = | 2 x1 | |
| [and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [s (x1) ] | = | x1 | |
| [isNatIList (x1) ] | = | x1 | |
| [a__U11 (x1, x2) ] | = | 3 x1 + 2 | |
| [zeros] | = | 0 | |
| [mark (x1) ] | = | 2 x1 | |
| [a__zeros] | = | 0 | |
| [a__and# (x1, x2) ] | = | x1 + 2 x2 | |
| [mark# (x1) ] | = | x1 | |
| [a__isNatIList# (x1) ] | = | x1 | |
| [nil] | = | 1 | |
| [a__isNatList (x1) ] | = | 2 x1 | |
| [a__isNat# (x1) ] | = | 2 x1 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [isNat (x1) ] | = | 2 x1 | |
| [U11 (x1, x2) ] | = | 2 x1 + 1 | |
| [a__isNat (x1) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 2 component(s).
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| mark#( isNatIList( X ) ) | → | a__isNatIList#( X ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__U11 (x1, x2) ] | = | 0 | |
| [a__isNatList# (x1) ] | = | 0 | |
| [length (x1) ] | = | 0 | |
| [zeros] | = | 1 | |
| [mark (x1) ] | = | 2 x1 | |
| [a__length (x1) ] | = | 0 | |
| [a__isNatIList (x1) ] | = | 2 x1 + 2 | |
| [a__zeros] | = | 2 | |
| [a__and# (x1, x2) ] | = | x1 | |
| [mark# (x1) ] | = | x1 | |
| [0] | = | 0 | |
| [nil] | = | 0 | |
| [a__isNatIList# (x1) ] | = | x1 | |
| [cons (x1, x2) ] | = | x1 + 1 | |
| [isNatList (x1) ] | = | 0 | |
| [a__isNatList (x1) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | x1 + 2 x2 | |
| [isNat (x1) ] | = | 0 | |
| [U11 (x1, x2) ] | = | 0 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | 2 x1 | |
| [a__isNat (x1) ] | = | 0 | |
| [isNatIList (x1) ] | = | x1 + 1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| a__isNatIList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatIList( V2 ) ) |
| mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| a__isNatList#( cons( V1 , V2 ) ) | → | a__and#( a__isNat( V1 ) , isNatList( V2 ) ) |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__U11 (x1, x2) ] | = | x1 + 2 x2 | |
| [a__isNatList# (x1) ] | = | x1 + 1 | |
| [length (x1) ] | = | x1 | |
| [mark (x1) ] | = | x1 + 1 | |
| [zeros] | = | 0 | |
| [a__length (x1) ] | = | x1 | |
| [a__isNatIList (x1) ] | = | 2 x1 + 2 | |
| [a__zeros] | = | 1 | |
| [a__and# (x1, x2) ] | = | x1 + x2 | |
| [mark# (x1) ] | = | x1 + 1 | |
| [0] | = | 1 | |
| [nil] | = | 1 | |
| [cons (x1, x2) ] | = | x1 + 3 x2 | |
| [isNatList (x1) ] | = | x1 | |
| [a__isNatList (x1) ] | = | x1 | |
| [tt] | = | 1 | |
| [a__and (x1, x2) ] | = | x1 + x2 | |
| [isNat (x1) ] | = | x1 | |
| [U11 (x1, x2) ] | = | x1 + 2 x2 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | x1 | |
| [a__isNat (x1) ] | = | x1 | |
| [isNatIList (x1) ] | = | 2 x1 + 1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatList( X ) ) | → | a__isNatList#( X ) |
| mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__U11 (x1, x2) ] | = | 3 x1 + 2 | |
| [length (x1) ] | = | x1 | |
| [mark (x1) ] | = | 2 x1 + 2 | |
| [zeros] | = | 0 | |
| [a__length (x1) ] | = | x1 | |
| [a__isNatIList (x1) ] | = | 2 x1 + 3 | |
| [a__zeros] | = | 2 | |
| [a__and# (x1, x2) ] | = | x1 + 3 x2 | |
| [mark# (x1) ] | = | 2 x1 + 3 | |
| [0] | = | 0 | |
| [nil] | = | 2 | |
| [cons (x1, x2) ] | = | 2 x1 + 3 x2 + 2 | |
| [isNatList (x1) ] | = | 2 x1 | |
| [a__isNatList (x1) ] | = | 2 x1 | |
| [tt] | = | 3 | |
| [a__and (x1, x2) ] | = | x1 + 2 x2 | |
| [isNat (x1) ] | = | x1 + 2 | |
| [U11 (x1, x2) ] | = | 2 x1 + 2 | |
| [and (x1, x2) ] | = | x1 + 2 x2 | |
| [s (x1) ] | = | x1 | |
| [a__isNat (x1) ] | = | 2 x1 + 3 | |
| [isNatIList (x1) ] | = | x1 + 1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
| mark#( s( X ) ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
| [a__U11 (x1, x2) ] | = | x1 + 1 | |
| [length (x1) ] | = | x1 | |
| [zeros] | = | 0 | |
| [mark (x1) ] | = | x1 + 1 | |
| [a__length (x1) ] | = | x1 | |
| [a__isNatIList (x1) ] | = | 2 x1 + 1 | |
| [a__zeros] | = | 1 | |
| [mark# (x1) ] | = | 3 x1 | |
| [0] | = | 0 | |
| [nil] | = | 0 | |
| [isNatList (x1) ] | = | x1 | |
| [a__isNatList (x1) ] | = | x1 | |
| [cons (x1, x2) ] | = | x1 + x2 + 1 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | x1 + x2 + 1 | |
| [isNat (x1) ] | = | x1 | |
| [U11 (x1, x2) ] | = | x1 | |
| [and (x1, x2) ] | = | x1 + x2 + 1 | |
| [a__isNat (x1) ] | = | x1 | |
| [s (x1) ] | = | x1 | |
| [isNatIList (x1) ] | = | 2 x1 + 1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a__U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
| [zeros] | = | 0 | |
| [mark (x1) ] | = | 2 x1 + 1 | |
| [length (x1) ] | = | x1 + 1 | |
| [a__length (x1) ] | = | x1 + 1 | |
| [a__isNatIList (x1) ] | = | 2 x1 + 1 | |
| [a__zeros] | = | 1 | |
| [mark# (x1) ] | = | 2 x1 | |
| [0] | = | 0 | |
| [nil] | = | 2 | |
| [isNatList (x1) ] | = | x1 | |
| [a__isNatList (x1) ] | = | x1 | |
| [cons (x1, x2) ] | = | 2 x1 + 3 x2 + 1 | |
| [tt] | = | 1 | |
| [a__and (x1, x2) ] | = | x1 + 2 x2 | |
| [isNat (x1) ] | = | x1 | |
| [U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [a__isNat (x1) ] | = | 2 x1 + 1 | |
| [s (x1) ] | = | x1 + 1 | |
| [isNatIList (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| a__isNat#( s( V1 ) ) | → | a__isNat#( V1 ) |
Linear polynomial interpretation over the naturals
| [a__U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
| [zeros] | = | 0 | |
| [mark (x1) ] | = | 2 x1 + 1 | |
| [length (x1) ] | = | x1 + 1 | |
| [a__length (x1) ] | = | x1 + 1 | |
| [a__isNatIList (x1) ] | = | 2 x1 + 1 | |
| [a__zeros] | = | 1 | |
| [0] | = | 0 | |
| [nil] | = | 2 | |
| [isNatList (x1) ] | = | x1 | |
| [a__isNatList (x1) ] | = | x1 | |
| [cons (x1, x2) ] | = | 2 x1 + 3 x2 + 1 | |
| [tt] | = | 1 | |
| [a__isNat# (x1) ] | = | 2 x1 | |
| [a__and (x1, x2) ] | = | x1 + 2 x2 | |
| [isNat (x1) ] | = | x1 | |
| [U11 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [a__isNat (x1) ] | = | 2 x1 + 1 | |
| [s (x1) ] | = | x1 + 1 | |
| [isNatIList (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.