Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | U11 : symb | _0_1 : symb | a__U11 : symb | a__and : symb | a__isNat : symb | a__isNatIList : symb | a__isNatList : symb | a__length : symb | a__zeros : symb | and : symb | cons : symb | isNat : symb | isNatIList : symb | isNatList : symb | length : symb | mark : symb | nil : symb | s : symb | tt : symb | zeros : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.U11 => 2 | M._0_1 => 0 | M.a__U11 => 2 | M.a__and => 2 | M.a__isNat => 1 | M.a__isNatIList => 1 | M.a__isNatList => 1 | M.a__length => 1 | M.a__zeros => 0 | M.and => 2 | M.cons => 2 | M.isNat => 1 | M.isNatIList => 1 | M.isNatList => 1 | M.length => 1 | M.mark => 1 | M.nil => 0 | M.s => 1 | M.tt => 0 | M.zeros => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition U11 x2 x1 := F0 M.U11 (Vcons x2 (Vcons x1 Vnil)). Definition _0_1 := F0 M._0_1 Vnil. Definition a__U11 x2 x1 := F0 M.a__U11 (Vcons x2 (Vcons x1 Vnil)). Definition a__and x2 x1 := F0 M.a__and (Vcons x2 (Vcons x1 Vnil)). Definition a__isNat x1 := F0 M.a__isNat (Vcons x1 Vnil). Definition a__isNatIList x1 := F0 M.a__isNatIList (Vcons x1 Vnil). Definition a__isNatList x1 := F0 M.a__isNatList (Vcons x1 Vnil). Definition a__length x1 := F0 M.a__length (Vcons x1 Vnil). Definition a__zeros := F0 M.a__zeros Vnil. Definition and x2 x1 := F0 M.and (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition isNat x1 := F0 M.isNat (Vcons x1 Vnil). Definition isNatIList x1 := F0 M.isNatIList (Vcons x1 Vnil). Definition isNatList x1 := F0 M.isNatList (Vcons x1 Vnil). Definition length x1 := F0 M.length (Vcons x1 Vnil). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition tt := F0 M.tt Vnil. Definition zeros := F0 M.zeros Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 S0.a__zeros (S0.cons S0._0_1 S0.zeros) :: R0 (S0.a__U11 S0.tt (V0 0)) (S0.s (S0.a__length (S0.mark (V0 0)))) :: R0 (S0.a__and S0.tt (V0 0)) (S0.mark (V0 0)) :: R0 (S0.a__isNat S0._0_1) S0.tt :: R0 (S0.a__isNat (S0.length (V0 0))) (S0.a__isNatList (V0 0)) :: R0 (S0.a__isNat (S0.s (V0 0))) (S0.a__isNat (V0 0)) :: R0 (S0.a__isNatIList (V0 0)) (S0.a__isNatList (V0 0)) :: R0 (S0.a__isNatIList S0.zeros) S0.tt :: R0 (S0.a__isNatIList (S0.cons (V0 0) (V0 1))) (S0.a__and (S0.a__isNat (V0 0)) (S0.isNatIList (V0 1))) :: R0 (S0.a__isNatList S0.nil) S0.tt :: R0 (S0.a__isNatList (S0.cons (V0 0) (V0 1))) (S0.a__and (S0.a__isNat (V0 0)) (S0.isNatList (V0 1))) :: R0 (S0.a__length S0.nil) S0._0_1 :: R0 (S0.a__length (S0.cons (V0 0) (V0 1))) (S0.a__U11 (S0.a__and (S0.a__isNatList (V0 1)) (S0.isNat (V0 0))) (V0 1)) :: R0 (S0.mark S0.zeros) S0.a__zeros :: R0 (S0.mark (S0.U11 (V0 0) (V0 1))) (S0.a__U11 (S0.mark (V0 0)) (V0 1)) :: R0 (S0.mark (S0.length (V0 0))) (S0.a__length (S0.mark (V0 0))) :: R0 (S0.mark (S0.and (V0 0) (V0 1))) (S0.a__and (S0.mark (V0 0)) (V0 1)) :: R0 (S0.mark (S0.isNat (V0 0))) (S0.a__isNat (V0 0)) :: R0 (S0.mark (S0.isNatList (V0 0))) (S0.a__isNatList (V0 0)) :: R0 (S0.mark (S0.isNatIList (V0 0))) (S0.a__isNatIList (V0 0)) :: R0 (S0.mark (S0.cons (V0 0) (V0 1))) (S0.cons (S0.mark (V0 0)) (V0 1)) :: R0 (S0.mark S0._0_1) S0._0_1 :: R0 (S0.mark S0.tt) S0.tt :: R0 (S0.mark (S0.s (V0 0))) (S0.s (S0.mark (V0 0))) :: R0 (S0.mark S0.nil) S0.nil :: R0 S0.a__zeros S0.zeros :: R0 (S0.a__U11 (V0 0) (V0 1)) (S0.U11 (V0 0) (V0 1)) :: R0 (S0.a__length (V0 0)) (S0.length (V0 0)) :: R0 (S0.a__and (V0 0) (V0 1)) (S0.and (V0 0) (V0 1)) :: R0 (S0.a__isNat (V0 0)) (S0.isNat (V0 0)) :: R0 (S0.a__isNatList (V0 0)) (S0.isNatList (V0 0)) :: R0 (S0.a__isNatIList (V0 0)) (S0.isNatIList (V0 0)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hU11 x2 x1 := F1 (hd_symb s1_p M.U11) (Vcons x2 (Vcons x1 Vnil)). Definition U11 x2 x1 := F1 (int_symb s1_p M.U11) (Vcons x2 (Vcons x1 Vnil)). Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition ha__U11 x2 x1 := F1 (hd_symb s1_p M.a__U11) (Vcons x2 (Vcons x1 Vnil)). Definition a__U11 x2 x1 := F1 (int_symb s1_p M.a__U11) (Vcons x2 (Vcons x1 Vnil)). Definition ha__and x2 x1 := F1 (hd_symb s1_p M.a__and) (Vcons x2 (Vcons x1 Vnil)). Definition a__and x2 x1 := F1 (int_symb s1_p M.a__and) (Vcons x2 (Vcons x1 Vnil)). Definition ha__isNat x1 := F1 (hd_symb s1_p M.a__isNat) (Vcons x1 Vnil). Definition a__isNat x1 := F1 (int_symb s1_p M.a__isNat) (Vcons x1 Vnil). Definition ha__isNatIList x1 := F1 (hd_symb s1_p M.a__isNatIList) (Vcons x1 Vnil). Definition a__isNatIList x1 := F1 (int_symb s1_p M.a__isNatIList) (Vcons x1 Vnil). Definition ha__isNatList x1 := F1 (hd_symb s1_p M.a__isNatList) (Vcons x1 Vnil). Definition a__isNatList x1 := F1 (int_symb s1_p M.a__isNatList) (Vcons x1 Vnil). Definition ha__length x1 := F1 (hd_symb s1_p M.a__length) (Vcons x1 Vnil). Definition a__length x1 := F1 (int_symb s1_p M.a__length) (Vcons x1 Vnil). Definition ha__zeros := F1 (hd_symb s1_p M.a__zeros) Vnil. Definition a__zeros := F1 (int_symb s1_p M.a__zeros) Vnil. Definition hand x2 x1 := F1 (hd_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F1 (int_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hisNat x1 := F1 (hd_symb s1_p M.isNat) (Vcons x1 Vnil). Definition isNat x1 := F1 (int_symb s1_p M.isNat) (Vcons x1 Vnil). Definition hisNatIList x1 := F1 (hd_symb s1_p M.isNatIList) (Vcons x1 Vnil). Definition isNatIList x1 := F1 (int_symb s1_p M.isNatIList) (Vcons x1 Vnil). Definition hisNatList x1 := F1 (hd_symb s1_p M.isNatList) (Vcons x1 Vnil). Definition isNatList x1 := F1 (int_symb s1_p M.isNatList) (Vcons x1 Vnil). Definition hlength x1 := F1 (hd_symb s1_p M.length) (Vcons x1 Vnil). Definition length x1 := F1 (int_symb s1_p M.length) (Vcons x1 Vnil). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition htt := F1 (hd_symb s1_p M.tt) Vnil. Definition tt := F1 (int_symb s1_p M.tt) Vnil. Definition hzeros := F1 (hd_symb s1_p M.zeros) Vnil. Definition zeros := F1 (int_symb s1_p M.zeros) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.zeros)) (S1.ha__zeros) :: nil) :: ( R1 (S1.ha__length (S1.cons (V1 0) (V1 1))) (S1.ha__U11 (S1.a__and (S1.a__isNatList (V1 1)) (S1.isNat (V1 0))) (V1 1)) :: R1 (S1.ha__U11 (S1.tt) (V1 0)) (S1.ha__length (S1.mark (V1 0))) :: R1 (S1.ha__length (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNatList (V1 1)) (S1.isNat (V1 0))) :: R1 (S1.ha__and (S1.tt) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.U11 (V1 0) (V1 1))) (S1.ha__U11 (S1.mark (V1 0)) (V1 1)) :: R1 (S1.ha__U11 (S1.tt) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.U11 (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.length (V1 0))) (S1.ha__length (S1.mark (V1 0))) :: R1 (S1.ha__length (S1.cons (V1 0) (V1 1))) (S1.ha__isNatList (V1 1)) :: R1 (S1.ha__isNatList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatList (V1 1))) :: R1 (S1.ha__isNatList (S1.cons (V1 0) (V1 1))) (S1.ha__isNat (V1 0)) :: R1 (S1.ha__isNat (S1.length (V1 0))) (S1.ha__isNatList (V1 0)) :: R1 (S1.ha__isNat (S1.s (V1 0))) (S1.ha__isNat (V1 0)) :: R1 (S1.hmark (S1.length (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.ha__and (S1.mark (V1 0)) (V1 1)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.isNat (V1 0))) (S1.ha__isNat (V1 0)) :: R1 (S1.hmark (S1.isNatList (V1 0))) (S1.ha__isNatList (V1 0)) :: R1 (S1.hmark (S1.isNatIList (V1 0))) (S1.ha__isNatIList (V1 0)) :: R1 (S1.ha__isNatIList (V1 0)) (S1.ha__isNatList (V1 0)) :: R1 (S1.ha__isNatIList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatIList (V1 1))) :: R1 (S1.ha__isNatIList (S1.cons (V1 0) (V1 1))) (S1.ha__isNat (V1 0)) :: R1 (S1.hmark (S1.cons (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.s (V1 0))) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__U11) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__length) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => nil | (hd_symb M.length) => nil | (int_symb M.length) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.ha__and (S1.mark (V1 0)) (V1 1)) :: R1 (S1.ha__and (S1.tt) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.isNat (V1 0))) (S1.ha__isNat (V1 0)) :: R1 (S1.ha__isNat (S1.length (V1 0))) (S1.ha__isNatList (V1 0)) :: R1 (S1.ha__isNatList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatList (V1 1))) :: R1 (S1.ha__isNatList (S1.cons (V1 0) (V1 1))) (S1.ha__isNat (V1 0)) :: R1 (S1.ha__isNat (S1.s (V1 0))) (S1.ha__isNat (V1 0)) :: R1 (S1.hmark (S1.isNatList (V1 0))) (S1.ha__isNatList (V1 0)) :: R1 (S1.hmark (S1.isNatIList (V1 0))) (S1.ha__isNatIList (V1 0)) :: R1 (S1.ha__isNatIList (V1 0)) (S1.ha__isNatList (V1 0)) :: R1 (S1.ha__isNatIList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatIList (V1 1))) :: R1 (S1.ha__isNatIList (S1.cons (V1 0) (V1 1))) (S1.ha__isNat (V1 0)) :: R1 (S1.hmark (S1.cons (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.s (V1 0))) (S1.hmark (V1 0)) :: nil) :: ( R1 (S1.ha__U11 (S1.tt) (V1 0)) (S1.ha__length (S1.mark (V1 0))) :: R1 (S1.ha__length (S1.cons (V1 0) (V1 1))) (S1.ha__U11 (S1.a__and (S1.a__isNatList (V1 1)) (S1.isNat (V1 0))) (V1 1)) :: nil) :: nil. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (2%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => (2%Z, Vnil) :: nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => nil | (hd_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => nil | (hd_symb M.length) => nil | (int_symb M.length) => nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => nil | (hd_symb M.U11) => nil | (int_symb M.U11) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => nil | (hd_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => nil | (hd_symb M.length) => nil | (int_symb M.length) => nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => nil | (hd_symb M.a__isNatIList) => (1%Z, (Vcons 0 Vnil)) :: nil | (int_symb M.a__isNatIList) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => nil | (hd_symb M.U11) => nil | (int_symb M.U11) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__isNat) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.length) => nil | (int_symb M.length) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__isNatList) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatIList) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__isNatIList) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* graph decomposition 3 *) Definition cs3 : list (list (@ATrs.rule s1)) := ( R1 (S1.ha__isNat (S1.s (V1 0))) (S1.ha__isNat (V1 0)) :: nil) :: ( R1 (S1.ha__isNatList (S1.cons (V1 0) (V1 1))) (S1.ha__isNat (V1 0)) :: nil) :: ( R1 (S1.hmark (S1.isNat (V1 0))) (S1.ha__isNat (V1 0)) :: nil) :: ( R1 (S1.ha__and (S1.tt) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.ha__and (S1.mark (V1 0)) (V1 1)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.isNatList (V1 0))) (S1.ha__isNatList (V1 0)) :: R1 (S1.ha__isNatList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatList (V1 1))) :: R1 (S1.hmark (S1.isNatIList (V1 0))) (S1.ha__isNatIList (V1 0)) :: R1 (S1.ha__isNatIList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatIList (V1 1))) :: R1 (S1.hmark (S1.s (V1 0))) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 5 *) Module PIS5 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (1%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (1%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => nil | (int_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__isNat) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.length) => nil | (int_symb M.length) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS5. Module PI5 := PolyInt PIS5. (* polynomial interpretation 6 *) Module PIS6 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (2%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => (1%Z, Vnil) :: nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => nil | (hd_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => nil | (hd_symb M.length) => nil | (int_symb M.length) => nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => nil | (hd_symb M.a__isNatIList) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__isNatIList) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => nil | (hd_symb M.U11) => nil | (int_symb M.U11) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS6. Module PI6 := PolyInt PIS6. (* graph decomposition 4 *) Definition cs4 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.ha__and (S1.mark (V1 0)) (V1 1)) :: R1 (S1.ha__and (S1.tt) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.isNatList (V1 0))) (S1.ha__isNatList (V1 0)) :: R1 (S1.ha__isNatList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatList (V1 1))) :: R1 (S1.hmark (S1.s (V1 0))) (S1.hmark (V1 0)) :: nil) :: ( R1 (S1.ha__isNatIList (S1.cons (V1 0) (V1 1))) (S1.ha__and (S1.a__isNat (V1 0)) (S1.isNatIList (V1 1))) :: nil) :: nil. (* polynomial interpretation 7 *) Module PIS7 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (1%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (1%Z, Vnil) :: nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (1%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.length) => nil | (int_symb M.length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS7. Module PI7 := PolyInt PIS7. (* graph decomposition 5 *) Definition cs5 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.isNatList (V1 0))) (S1.ha__isNatList (V1 0)) :: nil) :: ( R1 (S1.ha__and (S1.tt) (V1 0)) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.ha__and (S1.mark (V1 0)) (V1 1)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.s (V1 0))) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 8 *) Module PIS8 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (2%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (3%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.length) => nil | (int_symb M.length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS8. Module PI8 := PolyInt PIS8. (* graph decomposition 6 *) Definition cs6 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmark (S1.s (V1 0))) (S1.hmark (V1 0)) :: R1 (S1.hmark (S1.and (V1 0) (V1 1))) (S1.hmark (V1 0)) :: nil) :: ( R1 (S1.ha__and (S1.tt) (V1 0)) (S1.hmark (V1 0)) :: nil) :: nil. (* polynomial interpretation 9 *) Module PIS9 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (1%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (3%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => nil | (int_symb M.a__and) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.length) => nil | (int_symb M.length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS9. Module PI9 := PolyInt PIS9. (* polynomial interpretation 10 *) Module PIS10 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (1%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => nil | (int_symb M.a__U11) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (1%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => nil | (int_symb M.a__length) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => nil | (int_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.length) => nil | (int_symb M.length) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS10. Module PI10 := PolyInt PIS10. (* polynomial interpretation 11 *) Module PIS11 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__zeros) => nil | (int_symb M.a__zeros) => (2%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (1%Z, Vnil) :: nil | (hd_symb M.zeros) => nil | (int_symb M.zeros) => nil | (hd_symb M.a__U11) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__U11) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (2%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__length) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.a__length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__and) => nil | (int_symb M.a__and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a__isNat) => nil | (int_symb M.a__isNat) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.length) => nil | (int_symb M.length) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatList) => nil | (int_symb M.a__isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__isNatIList) => nil | (int_symb M.a__isNatIList) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNatIList) => nil | (int_symb M.isNatIList) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.isNatList) => nil | (int_symb M.isNatList) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.isNat) => nil | (int_symb M.isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS11. Module PI11 := PolyInt PIS11. (* graph decomposition 7 *) Definition cs7 : list (list (@ATrs.rule s1)) := ( R1 (S1.ha__U11 (S1.tt) (V1 0)) (S1.ha__length (S1.mark (V1 0))) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. right. PI2.prove_termination. PI3.prove_termination. PI4.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs3; subst D; subst R. dpg_unif_N_correct. right. PI5.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI6.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs4; subst D; subst R. dpg_unif_N_correct. right. PI7.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs5; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI8.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs6; subst D; subst R. dpg_unif_N_correct. right. PI9.prove_termination. PI10.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI11.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs7; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.