active#(
__(
__(
X
,
Y
)
,
Z
)
)
|
→ |
__#(
X
,
__(
Y
,
Z
)
)
|
active#(
__(
__(
X
,
Y
)
,
Z
)
)
|
→ |
__#(
Y
,
Z
)
|
active#(
isList(
V
)
)
|
→ |
isNeList#(
V
)
|
active#(
isList(
__(
V1
,
V2
)
)
)
|
→ |
and#(
isList(
V1
)
,
isList(
V2
)
)
|
active#(
isList(
__(
V1
,
V2
)
)
)
|
→ |
isList#(
V1
)
|
active#(
isList(
__(
V1
,
V2
)
)
)
|
→ |
isList#(
V2
)
|
active#(
isNeList(
V
)
)
|
→ |
isQid#(
V
)
|
active#(
isNeList(
__(
V1
,
V2
)
)
)
|
→ |
and#(
isList(
V1
)
,
isNeList(
V2
)
)
|
active#(
isNeList(
__(
V1
,
V2
)
)
)
|
→ |
isList#(
V1
)
|
active#(
isNeList(
__(
V1
,
V2
)
)
)
|
→ |
isNeList#(
V2
)
|
active#(
isNeList(
__(
V1
,
V2
)
)
)
|
→ |
and#(
isNeList(
V1
)
,
isList(
V2
)
)
|
active#(
isNeList(
__(
V1
,
V2
)
)
)
|
→ |
isNeList#(
V1
)
|
active#(
isNeList(
__(
V1
,
V2
)
)
)
|
→ |
isList#(
V2
)
|
active#(
isNePal(
V
)
)
|
→ |
isQid#(
V
)
|
active#(
isNePal(
__(
I
,
__(
P
,
I
)
)
)
)
|
→ |
and#(
isQid(
I
)
,
isPal(
P
)
)
|
active#(
isNePal(
__(
I
,
__(
P
,
I
)
)
)
)
|
→ |
isQid#(
I
)
|
active#(
isNePal(
__(
I
,
__(
P
,
I
)
)
)
)
|
→ |
isPal#(
P
)
|
active#(
isPal(
V
)
)
|
→ |
isNePal#(
V
)
|
active#(
__(
X1
,
X2
)
)
|
→ |
__#(
active(
X1
)
,
X2
)
|
active#(
__(
X1
,
X2
)
)
|
→ |
active#(
X1
)
|
active#(
__(
X1
,
X2
)
)
|
→ |
__#(
X1
,
active(
X2
)
)
|
active#(
__(
X1
,
X2
)
)
|
→ |
active#(
X2
)
|
active#(
and(
X1
,
X2
)
)
|
→ |
and#(
active(
X1
)
,
X2
)
|
active#(
and(
X1
,
X2
)
)
|
→ |
active#(
X1
)
|
__#(
mark(
X1
)
,
X2
)
|
→ |
__#(
X1
,
X2
)
|
__#(
X1
,
mark(
X2
)
)
|
→ |
__#(
X1
,
X2
)
|
and#(
mark(
X1
)
,
X2
)
|
→ |
and#(
X1
,
X2
)
|
proper#(
__(
X1
,
X2
)
)
|
→ |
__#(
proper(
X1
)
,
proper(
X2
)
)
|
proper#(
__(
X1
,
X2
)
)
|
→ |
proper#(
X1
)
|
proper#(
__(
X1
,
X2
)
)
|
→ |
proper#(
X2
)
|
proper#(
and(
X1
,
X2
)
)
|
→ |
and#(
proper(
X1
)
,
proper(
X2
)
)
|
proper#(
and(
X1
,
X2
)
)
|
→ |
proper#(
X1
)
|
proper#(
and(
X1
,
X2
)
)
|
→ |
proper#(
X2
)
|
proper#(
isList(
X
)
)
|
→ |
isList#(
proper(
X
)
)
|
proper#(
isList(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isNeList(
X
)
)
|
→ |
isNeList#(
proper(
X
)
)
|
proper#(
isNeList(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isQid(
X
)
)
|
→ |
isQid#(
proper(
X
)
)
|
proper#(
isQid(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isNePal(
X
)
)
|
→ |
isNePal#(
proper(
X
)
)
|
proper#(
isNePal(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isPal(
X
)
)
|
→ |
isPal#(
proper(
X
)
)
|
proper#(
isPal(
X
)
)
|
→ |
proper#(
X
)
|
__#(
ok(
X1
)
,
ok(
X2
)
)
|
→ |
__#(
X1
,
X2
)
|
and#(
ok(
X1
)
,
ok(
X2
)
)
|
→ |
and#(
X1
,
X2
)
|
isList#(
ok(
X
)
)
|
→ |
isList#(
X
)
|
isNeList#(
ok(
X
)
)
|
→ |
isNeList#(
X
)
|
isQid#(
ok(
X
)
)
|
→ |
isQid#(
X
)
|
isNePal#(
ok(
X
)
)
|
→ |
isNePal#(
X
)
|
isPal#(
ok(
X
)
)
|
→ |
isPal#(
X
)
|
top#(
mark(
X
)
)
|
→ |
top#(
proper(
X
)
)
|
top#(
mark(
X
)
)
|
→ |
proper#(
X
)
|
top#(
ok(
X
)
)
|
→ |
top#(
active(
X
)
)
|
top#(
ok(
X
)
)
|
→ |
active#(
X
)
|
The dependency pairs are split into 10 component(s).
-
The
1st
component contains the
pair(s)
top#(
ok(
X
)
)
|
→ |
top#(
active(
X
)
)
|
top#(
mark(
X
)
)
|
→ |
top#(
proper(
X
)
)
|
1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
2
|
[mark
(x1)
]
|
= |
x1
+
1
|
[__
(x1, x2)
]
|
= |
2
x1 + x2
+
1
|
[isNePal
(x1)
]
|
= |
2
x1
+
2
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
2
|
[nil]
|
= |
2
|
[tt]
|
= |
2
|
[o]
|
= |
2
|
[e]
|
= |
2
|
[u]
|
= |
2
|
[and
(x1, x2)
]
|
= |
x1 + x2
|
[isNeList
(x1)
]
|
= |
3
x1
+
1
|
[isQid
(x1)
]
|
= |
2
x1
|
[isPal
(x1)
]
|
= |
2
x1
+
3
|
[top#
(x1)
]
|
= |
x1
|
[ok
(x1)
]
|
= |
x1
|
[isList
(x1)
]
|
= |
3
x1
+
2
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
top#(
ok(
X
)
)
|
→ |
top#(
active(
X
)
)
|
1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
2
|
[__
(x1, x2)
]
|
= |
x1 +
3
x2
|
[mark
(x1)
]
|
= |
0
|
[isNePal
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
2
|
[nil]
|
= |
2
|
[tt]
|
= |
2
|
[o]
|
= |
2
|
[e]
|
= |
2
|
[u]
|
= |
2
|
[and
(x1, x2)
]
|
= |
2
x1
|
[isNeList
(x1)
]
|
= |
2
x1
+
2
|
[isQid
(x1)
]
|
= |
2
x1
|
[isPal
(x1)
]
|
= |
x1
|
[top#
(x1)
]
|
= |
3
x1
|
[ok
(x1)
]
|
= |
2
x1
+
2
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
3
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.1.1.1: P is empty
All dependency pairs have been removed.
-
The
2nd
component contains the
pair(s)
active#(
__(
X1
,
X2
)
)
|
→ |
active#(
X2
)
|
active#(
__(
X1
,
X2
)
)
|
→ |
active#(
X1
)
|
active#(
and(
X1
,
X2
)
)
|
→ |
active#(
X1
)
|
1.1.2: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[__
(x1, x2)
]
|
= |
x1 + x2
+
2
|
[mark
(x1)
]
|
= |
0
|
[a]
|
= |
2
|
[active#
(x1)
]
|
= |
2
x1
|
[isNePal
(x1)
]
|
= |
0
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
2
|
[nil]
|
= |
0
|
[tt]
|
= |
2
|
[o]
|
= |
2
|
[e]
|
= |
2
|
[u]
|
= |
0
|
[and
(x1, x2)
]
|
= |
2
x1 +
3
x2
+
1
|
[isNeList
(x1)
]
|
= |
3
x1
+
3
|
[isQid
(x1)
]
|
= |
3
x1
+
3
|
[isPal
(x1)
]
|
= |
3
x1
+
1
|
[ok
(x1)
]
|
= |
0
|
[isList
(x1)
]
|
= |
3
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.2.1: P is empty
All dependency pairs have been removed.
-
The
3rd
component contains the
pair(s)
proper#(
__(
X1
,
X2
)
)
|
→ |
proper#(
X2
)
|
proper#(
__(
X1
,
X2
)
)
|
→ |
proper#(
X1
)
|
proper#(
and(
X1
,
X2
)
)
|
→ |
proper#(
X1
)
|
proper#(
and(
X1
,
X2
)
)
|
→ |
proper#(
X2
)
|
proper#(
isList(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isNeList(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isQid(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isNePal(
X
)
)
|
→ |
proper#(
X
)
|
proper#(
isPal(
X
)
)
|
→ |
proper#(
X
)
|
1.1.3: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[__
(x1, x2)
]
|
= |
2
x1 + x2
|
[mark
(x1)
]
|
= |
0
|
[a]
|
= |
3
|
[isNePal
(x1)
]
|
= |
2
x1
+
1
|
[active
(x1)
]
|
= |
2
x1
|
[i]
|
= |
3
|
[nil]
|
= |
3
|
[tt]
|
= |
0
|
[o]
|
= |
3
|
[e]
|
= |
3
|
[u]
|
= |
1
|
[and
(x1, x2)
]
|
= |
x1 +
2
x2
+
1
|
[isNeList
(x1)
]
|
= |
x1
+
3
|
[proper#
(x1)
]
|
= |
x1
|
[isQid
(x1)
]
|
= |
x1
+
1
|
[isPal
(x1)
]
|
= |
x1
+
1
|
[ok
(x1)
]
|
= |
0
|
[isList
(x1)
]
|
= |
x1
+
3
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
proper#(
__(
X1
,
X2
)
)
|
→ |
proper#(
X2
)
|
proper#(
__(
X1
,
X2
)
)
|
→ |
proper#(
X1
)
|
1.1.3.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[__
(x1, x2)
]
|
= |
2
x1 + x2
+
1
|
[mark
(x1)
]
|
= |
0
|
[a]
|
= |
3
|
[isNePal
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
2
x1
|
[i]
|
= |
3
|
[nil]
|
= |
0
|
[tt]
|
= |
3
|
[o]
|
= |
3
|
[e]
|
= |
3
|
[u]
|
= |
3
|
[and
(x1, x2)
]
|
= |
x1 +
3
x2
|
[isNeList
(x1)
]
|
= |
0
|
[proper#
(x1)
]
|
= |
2
x1
|
[isQid
(x1)
]
|
= |
3
x1
|
[isPal
(x1)
]
|
= |
x1
|
[ok
(x1)
]
|
= |
0
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.3.1.1: P is empty
All dependency pairs have been removed.
-
The
4th
component contains the
pair(s)
__#(
X1
,
mark(
X2
)
)
|
→ |
__#(
X1
,
X2
)
|
__#(
mark(
X1
)
,
X2
)
|
→ |
__#(
X1
,
X2
)
|
__#(
ok(
X1
)
,
ok(
X2
)
)
|
→ |
__#(
X1
,
X2
)
|
1.1.4: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
0
|
[mark
(x1)
]
|
= |
x1
+
1
|
[__
(x1, x2)
]
|
= |
x1 + x2
|
[isNePal
(x1)
]
|
= |
0
|
[active
(x1)
]
|
= |
x1
+
1
|
[__#
(x1, x2)
]
|
= |
3
x1 +
3
x2
|
[i]
|
= |
0
|
[nil]
|
= |
0
|
[tt]
|
= |
0
|
[o]
|
= |
0
|
[e]
|
= |
0
|
[u]
|
= |
0
|
[and
(x1, x2)
]
|
= |
x1 +
2
x2
|
[isNeList
(x1)
]
|
= |
0
|
[isQid
(x1)
]
|
= |
0
|
[isPal
(x1)
]
|
= |
0
|
[ok
(x1)
]
|
= |
x1
|
[isList
(x1)
]
|
= |
0
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
__#(
ok(
X1
)
,
ok(
X2
)
)
|
→ |
__#(
X1
,
X2
)
|
1.1.4.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
1
|
[__
(x1, x2)
]
|
= |
x1 +
2
x2
|
[mark
(x1)
]
|
= |
0
|
[isNePal
(x1)
]
|
= |
2
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[__#
(x1, x2)
]
|
= |
x1
|
[i]
|
= |
1
|
[nil]
|
= |
2
|
[tt]
|
= |
3
|
[o]
|
= |
3
|
[e]
|
= |
1
|
[u]
|
= |
3
|
[and
(x1, x2)
]
|
= |
x1
|
[isNeList
(x1)
]
|
= |
3
x1
+
2
|
[isQid
(x1)
]
|
= |
x1
|
[isPal
(x1)
]
|
= |
3
x1
+
1
|
[ok
(x1)
]
|
= |
2
x1
+
1
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
3
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.4.1.1: P is empty
All dependency pairs have been removed.
-
The
5th
component contains the
pair(s)
and#(
ok(
X1
)
,
ok(
X2
)
)
|
→ |
and#(
X1
,
X2
)
|
and#(
mark(
X1
)
,
X2
)
|
→ |
and#(
X1
,
X2
)
|
1.1.5: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
2
|
[mark
(x1)
]
|
= |
0
|
[__
(x1, x2)
]
|
= |
3
x1
|
[isNePal
(x1)
]
|
= |
2
x1
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
2
|
[nil]
|
= |
2
|
[tt]
|
= |
2
|
[o]
|
= |
2
|
[e]
|
= |
2
|
[u]
|
= |
1
|
[and
(x1, x2)
]
|
= |
2
x1
+
1
|
[isNeList
(x1)
]
|
= |
x1
|
[isQid
(x1)
]
|
= |
3
x1
|
[isPal
(x1)
]
|
= |
x1
|
[ok
(x1)
]
|
= |
x1
+
1
|
[isList
(x1)
]
|
= |
3
x1
+
1
|
[and#
(x1, x2)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
and#(
mark(
X1
)
,
X2
)
|
→ |
and#(
X1
,
X2
)
|
1.1.5.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
x1
+
1
|
[__
(x1, x2)
]
|
= |
x1 + x2
|
[a]
|
= |
0
|
[isNePal
(x1)
]
|
= |
0
|
[active
(x1)
]
|
= |
x1
+
1
|
[i]
|
= |
0
|
[nil]
|
= |
0
|
[tt]
|
= |
0
|
[o]
|
= |
0
|
[e]
|
= |
0
|
[u]
|
= |
0
|
[and
(x1, x2)
]
|
= |
x1 + x2
|
[isNeList
(x1)
]
|
= |
0
|
[isQid
(x1)
]
|
= |
0
|
[isPal
(x1)
]
|
= |
0
|
[ok
(x1)
]
|
= |
0
|
[isList
(x1)
]
|
= |
0
|
[and#
(x1, x2)
]
|
= |
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.5.1.1: P is empty
All dependency pairs have been removed.
-
The
6th
component contains the
pair(s)
isList#(
ok(
X
)
)
|
→ |
isList#(
X
)
|
1.1.6: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[isList#
(x1)
]
|
= |
x1
|
[a]
|
= |
1
|
[__
(x1, x2)
]
|
= |
x1 +
2
x2
|
[mark
(x1)
]
|
= |
0
|
[isNePal
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
3
|
[nil]
|
= |
1
|
[tt]
|
= |
2
|
[o]
|
= |
3
|
[e]
|
= |
1
|
[u]
|
= |
2
|
[and
(x1, x2)
]
|
= |
2
x1
|
[isNeList
(x1)
]
|
= |
2
x1
|
[isQid
(x1)
]
|
= |
2
x1
+
3
|
[isPal
(x1)
]
|
= |
2
x1
|
[ok
(x1)
]
|
= |
x1
+
1
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.6.1: P is empty
All dependency pairs have been removed.
-
The
7th
component contains the
pair(s)
isNeList#(
ok(
X
)
)
|
→ |
isNeList#(
X
)
|
1.1.7: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
1
|
[__
(x1, x2)
]
|
= |
x1 +
2
x2
|
[mark
(x1)
]
|
= |
0
|
[isNePal
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
3
|
[nil]
|
= |
1
|
[tt]
|
= |
2
|
[o]
|
= |
3
|
[e]
|
= |
1
|
[u]
|
= |
2
|
[and
(x1, x2)
]
|
= |
2
x1
|
[isNeList#
(x1)
]
|
= |
x1
|
[isNeList
(x1)
]
|
= |
2
x1
|
[isQid
(x1)
]
|
= |
2
x1
+
3
|
[isPal
(x1)
]
|
= |
2
x1
|
[ok
(x1)
]
|
= |
x1
+
1
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.7.1: P is empty
All dependency pairs have been removed.
-
The
8th
component contains the
pair(s)
isQid#(
ok(
X
)
)
|
→ |
isQid#(
X
)
|
1.1.8: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[isQid#
(x1)
]
|
= |
x1
|
[a]
|
= |
1
|
[__
(x1, x2)
]
|
= |
x1 +
2
x2
|
[mark
(x1)
]
|
= |
0
|
[isNePal
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
3
|
[nil]
|
= |
1
|
[tt]
|
= |
2
|
[o]
|
= |
3
|
[e]
|
= |
1
|
[u]
|
= |
2
|
[and
(x1, x2)
]
|
= |
2
x1
|
[isNeList
(x1)
]
|
= |
2
x1
|
[isQid
(x1)
]
|
= |
2
x1
+
3
|
[isPal
(x1)
]
|
= |
2
x1
|
[ok
(x1)
]
|
= |
x1
+
1
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.8.1: P is empty
All dependency pairs have been removed.
-
The
9th
component contains the
pair(s)
isNePal#(
ok(
X
)
)
|
→ |
isNePal#(
X
)
|
1.1.9: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
1
|
[__
(x1, x2)
]
|
= |
x1 +
2
x2
|
[mark
(x1)
]
|
= |
0
|
[isNePal
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
3
|
[nil]
|
= |
1
|
[tt]
|
= |
2
|
[o]
|
= |
3
|
[e]
|
= |
1
|
[u]
|
= |
2
|
[and
(x1, x2)
]
|
= |
2
x1
|
[isNeList
(x1)
]
|
= |
2
x1
|
[isNePal#
(x1)
]
|
= |
x1
|
[isQid
(x1)
]
|
= |
2
x1
+
3
|
[isPal
(x1)
]
|
= |
2
x1
|
[ok
(x1)
]
|
= |
x1
+
1
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.9.1: P is empty
All dependency pairs have been removed.
-
The
10th
component contains the
pair(s)
isPal#(
ok(
X
)
)
|
→ |
isPal#(
X
)
|
1.1.10: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[a]
|
= |
1
|
[__
(x1, x2)
]
|
= |
x1 +
2
x2
|
[mark
(x1)
]
|
= |
0
|
[isPal#
(x1)
]
|
= |
x1
|
[isNePal
(x1)
]
|
= |
x1
|
[active
(x1)
]
|
= |
x1
|
[i]
|
= |
3
|
[nil]
|
= |
1
|
[tt]
|
= |
2
|
[o]
|
= |
3
|
[e]
|
= |
1
|
[u]
|
= |
2
|
[and
(x1, x2)
]
|
= |
2
x1
|
[isNeList
(x1)
]
|
= |
2
x1
|
[isQid
(x1)
]
|
= |
2
x1
+
3
|
[isPal
(x1)
]
|
= |
2
x1
|
[ok
(x1)
]
|
= |
x1
+
1
|
[isList
(x1)
]
|
= |
2
x1
|
[top
(x1)
]
|
= |
0
|
[proper
(x1)
]
|
= |
2
x1
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.10.1: P is empty
All dependency pairs have been removed.