active#( __( __( X , Y ) , Z ) ) | → | __#( X , __( Y , Z ) ) |
active#( __( __( X , Y ) , Z ) ) | → | __#( Y , Z ) |
active#( isList( V ) ) | → | isNeList#( V ) |
active#( isList( __( V1 , V2 ) ) ) | → | and#( isList( V1 ) , isList( V2 ) ) |
active#( isList( __( V1 , V2 ) ) ) | → | isList#( V1 ) |
active#( isList( __( V1 , V2 ) ) ) | → | isList#( V2 ) |
active#( isNeList( V ) ) | → | isQid#( V ) |
active#( isNeList( __( V1 , V2 ) ) ) | → | and#( isList( V1 ) , isNeList( V2 ) ) |
active#( isNeList( __( V1 , V2 ) ) ) | → | isList#( V1 ) |
active#( isNeList( __( V1 , V2 ) ) ) | → | isNeList#( V2 ) |
active#( isNeList( __( V1 , V2 ) ) ) | → | and#( isNeList( V1 ) , isList( V2 ) ) |
active#( isNeList( __( V1 , V2 ) ) ) | → | isNeList#( V1 ) |
active#( isNeList( __( V1 , V2 ) ) ) | → | isList#( V2 ) |
active#( isNePal( V ) ) | → | isQid#( V ) |
active#( isNePal( __( I , __( P , I ) ) ) ) | → | and#( isQid( I ) , isPal( P ) ) |
active#( isNePal( __( I , __( P , I ) ) ) ) | → | isQid#( I ) |
active#( isNePal( __( I , __( P , I ) ) ) ) | → | isPal#( P ) |
active#( isPal( V ) ) | → | isNePal#( V ) |
active#( __( X1 , X2 ) ) | → | __#( active( X1 ) , X2 ) |
active#( __( X1 , X2 ) ) | → | active#( X1 ) |
active#( __( X1 , X2 ) ) | → | __#( X1 , active( X2 ) ) |
active#( __( X1 , X2 ) ) | → | active#( X2 ) |
active#( and( X1 , X2 ) ) | → | and#( active( X1 ) , X2 ) |
active#( and( X1 , X2 ) ) | → | active#( X1 ) |
__#( mark( X1 ) , X2 ) | → | __#( X1 , X2 ) |
__#( X1 , mark( X2 ) ) | → | __#( X1 , X2 ) |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
proper#( __( X1 , X2 ) ) | → | __#( proper( X1 ) , proper( X2 ) ) |
proper#( __( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( __( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( and( X1 , X2 ) ) | → | and#( proper( X1 ) , proper( X2 ) ) |
proper#( and( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( and( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( isList( X ) ) | → | isList#( proper( X ) ) |
proper#( isList( X ) ) | → | proper#( X ) |
proper#( isNeList( X ) ) | → | isNeList#( proper( X ) ) |
proper#( isNeList( X ) ) | → | proper#( X ) |
proper#( isQid( X ) ) | → | isQid#( proper( X ) ) |
proper#( isQid( X ) ) | → | proper#( X ) |
proper#( isNePal( X ) ) | → | isNePal#( proper( X ) ) |
proper#( isNePal( X ) ) | → | proper#( X ) |
proper#( isPal( X ) ) | → | isPal#( proper( X ) ) |
proper#( isPal( X ) ) | → | proper#( X ) |
__#( ok( X1 ) , ok( X2 ) ) | → | __#( X1 , X2 ) |
and#( ok( X1 ) , ok( X2 ) ) | → | and#( X1 , X2 ) |
isList#( ok( X ) ) | → | isList#( X ) |
isNeList#( ok( X ) ) | → | isNeList#( X ) |
isQid#( ok( X ) ) | → | isQid#( X ) |
isNePal#( ok( X ) ) | → | isNePal#( X ) |
isPal#( ok( X ) ) | → | isPal#( X ) |
top#( mark( X ) ) | → | top#( proper( X ) ) |
top#( mark( X ) ) | → | proper#( X ) |
top#( ok( X ) ) | → | top#( active( X ) ) |
top#( ok( X ) ) | → | active#( X ) |
The dependency pairs are split into 10 component(s).
top#( ok( X ) ) | → | top#( active( X ) ) |
top#( mark( X ) ) | → | top#( proper( X ) ) |
Linear polynomial interpretation over the naturals
[a] | = | 2 | |
[mark (x1) ] | = | x1 + 1 | |
[__ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[isNePal (x1) ] | = | 2 x1 + 2 | |
[active (x1) ] | = | x1 | |
[i] | = | 2 | |
[nil] | = | 2 | |
[tt] | = | 2 | |
[o] | = | 2 | |
[e] | = | 2 | |
[u] | = | 2 | |
[and (x1, x2) ] | = | x1 + x2 | |
[isNeList (x1) ] | = | 3 x1 + 1 | |
[isQid (x1) ] | = | 2 x1 | |
[isPal (x1) ] | = | 2 x1 + 3 | |
[top# (x1) ] | = | x1 | |
[ok (x1) ] | = | x1 | |
[isList (x1) ] | = | 3 x1 + 2 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
top#( ok( X ) ) | → | top#( active( X ) ) |
Linear polynomial interpretation over the naturals
[a] | = | 2 | |
[__ (x1, x2) ] | = | x1 + 3 x2 | |
[mark (x1) ] | = | 0 | |
[isNePal (x1) ] | = | x1 | |
[active (x1) ] | = | x1 | |
[i] | = | 2 | |
[nil] | = | 2 | |
[tt] | = | 2 | |
[o] | = | 2 | |
[e] | = | 2 | |
[u] | = | 2 | |
[and (x1, x2) ] | = | 2 x1 | |
[isNeList (x1) ] | = | 2 x1 + 2 | |
[isQid (x1) ] | = | 2 x1 | |
[isPal (x1) ] | = | x1 | |
[top# (x1) ] | = | 3 x1 | |
[ok (x1) ] | = | 2 x1 + 2 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
active#( __( X1 , X2 ) ) | → | active#( X2 ) |
active#( __( X1 , X2 ) ) | → | active#( X1 ) |
active#( and( X1 , X2 ) ) | → | active#( X1 ) |
Linear polynomial interpretation over the naturals
[__ (x1, x2) ] | = | x1 + x2 + 2 | |
[mark (x1) ] | = | 0 | |
[a] | = | 2 | |
[active# (x1) ] | = | 2 x1 | |
[isNePal (x1) ] | = | 0 | |
[active (x1) ] | = | x1 | |
[i] | = | 2 | |
[nil] | = | 0 | |
[tt] | = | 2 | |
[o] | = | 2 | |
[e] | = | 2 | |
[u] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 + 3 x2 + 1 | |
[isNeList (x1) ] | = | 3 x1 + 3 | |
[isQid (x1) ] | = | 3 x1 + 3 | |
[isPal (x1) ] | = | 3 x1 + 1 | |
[ok (x1) ] | = | 0 | |
[isList (x1) ] | = | 3 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
proper#( __( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( __( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( and( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( and( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( isList( X ) ) | → | proper#( X ) |
proper#( isNeList( X ) ) | → | proper#( X ) |
proper#( isQid( X ) ) | → | proper#( X ) |
proper#( isNePal( X ) ) | → | proper#( X ) |
proper#( isPal( X ) ) | → | proper#( X ) |
Linear polynomial interpretation over the naturals
[__ (x1, x2) ] | = | 2 x1 + x2 | |
[mark (x1) ] | = | 0 | |
[a] | = | 3 | |
[isNePal (x1) ] | = | 2 x1 + 1 | |
[active (x1) ] | = | 2 x1 | |
[i] | = | 3 | |
[nil] | = | 3 | |
[tt] | = | 0 | |
[o] | = | 3 | |
[e] | = | 3 | |
[u] | = | 1 | |
[and (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[isNeList (x1) ] | = | x1 + 3 | |
[proper# (x1) ] | = | x1 | |
[isQid (x1) ] | = | x1 + 1 | |
[isPal (x1) ] | = | x1 + 1 | |
[ok (x1) ] | = | 0 | |
[isList (x1) ] | = | x1 + 3 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
proper#( __( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( __( X1 , X2 ) ) | → | proper#( X1 ) |
Linear polynomial interpretation over the naturals
[__ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[mark (x1) ] | = | 0 | |
[a] | = | 3 | |
[isNePal (x1) ] | = | x1 | |
[active (x1) ] | = | 2 x1 | |
[i] | = | 3 | |
[nil] | = | 0 | |
[tt] | = | 3 | |
[o] | = | 3 | |
[e] | = | 3 | |
[u] | = | 3 | |
[and (x1, x2) ] | = | x1 + 3 x2 | |
[isNeList (x1) ] | = | 0 | |
[proper# (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | 3 x1 | |
[isPal (x1) ] | = | x1 | |
[ok (x1) ] | = | 0 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
__#( X1 , mark( X2 ) ) | → | __#( X1 , X2 ) |
__#( mark( X1 ) , X2 ) | → | __#( X1 , X2 ) |
__#( ok( X1 ) , ok( X2 ) ) | → | __#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[a] | = | 0 | |
[mark (x1) ] | = | x1 + 1 | |
[__ (x1, x2) ] | = | x1 + x2 | |
[isNePal (x1) ] | = | 0 | |
[active (x1) ] | = | x1 + 1 | |
[__# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[i] | = | 0 | |
[nil] | = | 0 | |
[tt] | = | 0 | |
[o] | = | 0 | |
[e] | = | 0 | |
[u] | = | 0 | |
[and (x1, x2) ] | = | x1 + 2 x2 | |
[isNeList (x1) ] | = | 0 | |
[isQid (x1) ] | = | 0 | |
[isPal (x1) ] | = | 0 | |
[ok (x1) ] | = | x1 | |
[isList (x1) ] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
__#( ok( X1 ) , ok( X2 ) ) | → | __#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[a] | = | 1 | |
[__ (x1, x2) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | 0 | |
[isNePal (x1) ] | = | 2 x1 + 1 | |
[active (x1) ] | = | x1 | |
[__# (x1, x2) ] | = | x1 | |
[i] | = | 1 | |
[nil] | = | 2 | |
[tt] | = | 3 | |
[o] | = | 3 | |
[e] | = | 1 | |
[u] | = | 3 | |
[and (x1, x2) ] | = | x1 | |
[isNeList (x1) ] | = | 3 x1 + 2 | |
[isQid (x1) ] | = | x1 | |
[isPal (x1) ] | = | 3 x1 + 1 | |
[ok (x1) ] | = | 2 x1 + 1 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
and#( ok( X1 ) , ok( X2 ) ) | → | and#( X1 , X2 ) |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[a] | = | 2 | |
[mark (x1) ] | = | 0 | |
[__ (x1, x2) ] | = | 3 x1 | |
[isNePal (x1) ] | = | 2 x1 | |
[active (x1) ] | = | x1 | |
[i] | = | 2 | |
[nil] | = | 2 | |
[tt] | = | 2 | |
[o] | = | 2 | |
[e] | = | 2 | |
[u] | = | 1 | |
[and (x1, x2) ] | = | 2 x1 + 1 | |
[isNeList (x1) ] | = | x1 | |
[isQid (x1) ] | = | 3 x1 | |
[isPal (x1) ] | = | x1 | |
[ok (x1) ] | = | x1 + 1 | |
[isList (x1) ] | = | 3 x1 + 1 | |
[and# (x1, x2) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[__ (x1, x2) ] | = | x1 + x2 | |
[a] | = | 0 | |
[isNePal (x1) ] | = | 0 | |
[active (x1) ] | = | x1 + 1 | |
[i] | = | 0 | |
[nil] | = | 0 | |
[tt] | = | 0 | |
[o] | = | 0 | |
[e] | = | 0 | |
[u] | = | 0 | |
[and (x1, x2) ] | = | x1 + x2 | |
[isNeList (x1) ] | = | 0 | |
[isQid (x1) ] | = | 0 | |
[isPal (x1) ] | = | 0 | |
[ok (x1) ] | = | 0 | |
[isList (x1) ] | = | 0 | |
[and# (x1, x2) ] | = | x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
isList#( ok( X ) ) | → | isList#( X ) |
Linear polynomial interpretation over the naturals
[isList# (x1) ] | = | x1 | |
[a] | = | 1 | |
[__ (x1, x2) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | 0 | |
[isNePal (x1) ] | = | x1 | |
[active (x1) ] | = | x1 | |
[i] | = | 3 | |
[nil] | = | 1 | |
[tt] | = | 2 | |
[o] | = | 3 | |
[e] | = | 1 | |
[u] | = | 2 | |
[and (x1, x2) ] | = | 2 x1 | |
[isNeList (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | 2 x1 + 3 | |
[isPal (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | x1 + 1 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
isNeList#( ok( X ) ) | → | isNeList#( X ) |
Linear polynomial interpretation over the naturals
[a] | = | 1 | |
[__ (x1, x2) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | 0 | |
[isNePal (x1) ] | = | x1 | |
[active (x1) ] | = | x1 | |
[i] | = | 3 | |
[nil] | = | 1 | |
[tt] | = | 2 | |
[o] | = | 3 | |
[e] | = | 1 | |
[u] | = | 2 | |
[and (x1, x2) ] | = | 2 x1 | |
[isNeList# (x1) ] | = | x1 | |
[isNeList (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | 2 x1 + 3 | |
[isPal (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | x1 + 1 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
isQid#( ok( X ) ) | → | isQid#( X ) |
Linear polynomial interpretation over the naturals
[isQid# (x1) ] | = | x1 | |
[a] | = | 1 | |
[__ (x1, x2) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | 0 | |
[isNePal (x1) ] | = | x1 | |
[active (x1) ] | = | x1 | |
[i] | = | 3 | |
[nil] | = | 1 | |
[tt] | = | 2 | |
[o] | = | 3 | |
[e] | = | 1 | |
[u] | = | 2 | |
[and (x1, x2) ] | = | 2 x1 | |
[isNeList (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | 2 x1 + 3 | |
[isPal (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | x1 + 1 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
isNePal#( ok( X ) ) | → | isNePal#( X ) |
Linear polynomial interpretation over the naturals
[a] | = | 1 | |
[__ (x1, x2) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | 0 | |
[isNePal (x1) ] | = | x1 | |
[active (x1) ] | = | x1 | |
[i] | = | 3 | |
[nil] | = | 1 | |
[tt] | = | 2 | |
[o] | = | 3 | |
[e] | = | 1 | |
[u] | = | 2 | |
[and (x1, x2) ] | = | 2 x1 | |
[isNeList (x1) ] | = | 2 x1 | |
[isNePal# (x1) ] | = | x1 | |
[isQid (x1) ] | = | 2 x1 + 3 | |
[isPal (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | x1 + 1 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
isPal#( ok( X ) ) | → | isPal#( X ) |
Linear polynomial interpretation over the naturals
[a] | = | 1 | |
[__ (x1, x2) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | 0 | |
[isPal# (x1) ] | = | x1 | |
[isNePal (x1) ] | = | x1 | |
[active (x1) ] | = | x1 | |
[i] | = | 3 | |
[nil] | = | 1 | |
[tt] | = | 2 | |
[o] | = | 3 | |
[e] | = | 1 | |
[u] | = | 2 | |
[and (x1, x2) ] | = | 2 x1 | |
[isNeList (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | 2 x1 + 3 | |
[isPal (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | x1 + 1 | |
[isList (x1) ] | = | 2 x1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.