__#( __( X , Y ) , Z ) | → | __#( X , __( Y , Z ) ) |
__#( __( X , Y ) , Z ) | → | __#( Y , Z ) |
and#( tt , X ) | → | activate#( X ) |
isList#( V ) | → | isNeList#( activate( V ) ) |
isList#( V ) | → | activate#( V ) |
isList#( n____( V1 , V2 ) ) | → | and#( isList( activate( V1 ) ) , n__isList( activate( V2 ) ) ) |
isList#( n____( V1 , V2 ) ) | → | isList#( activate( V1 ) ) |
isList#( n____( V1 , V2 ) ) | → | activate#( V1 ) |
isList#( n____( V1 , V2 ) ) | → | activate#( V2 ) |
isNeList#( V ) | → | isQid#( activate( V ) ) |
isNeList#( V ) | → | activate#( V ) |
isNeList#( n____( V1 , V2 ) ) | → | and#( isList( activate( V1 ) ) , n__isNeList( activate( V2 ) ) ) |
isNeList#( n____( V1 , V2 ) ) | → | isList#( activate( V1 ) ) |
isNeList#( n____( V1 , V2 ) ) | → | activate#( V1 ) |
isNeList#( n____( V1 , V2 ) ) | → | activate#( V2 ) |
isNeList#( n____( V1 , V2 ) ) | → | and#( isNeList( activate( V1 ) ) , n__isList( activate( V2 ) ) ) |
isNeList#( n____( V1 , V2 ) ) | → | isNeList#( activate( V1 ) ) |
isNeList#( n____( V1 , V2 ) ) | → | activate#( V1 ) |
isNeList#( n____( V1 , V2 ) ) | → | activate#( V2 ) |
isNePal#( V ) | → | isQid#( activate( V ) ) |
isNePal#( V ) | → | activate#( V ) |
isNePal#( n____( I , n____( P , I ) ) ) | → | and#( isQid( activate( I ) ) , n__isPal( activate( P ) ) ) |
isNePal#( n____( I , n____( P , I ) ) ) | → | isQid#( activate( I ) ) |
isNePal#( n____( I , n____( P , I ) ) ) | → | activate#( I ) |
isNePal#( n____( I , n____( P , I ) ) ) | → | activate#( P ) |
isPal#( V ) | → | isNePal#( activate( V ) ) |
isPal#( V ) | → | activate#( V ) |
activate#( n__nil ) | → | nil# |
activate#( n____( X1 , X2 ) ) | → | __#( activate( X1 ) , activate( X2 ) ) |
activate#( n____( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n____( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__isList( X ) ) | → | isList#( X ) |
activate#( n__isNeList( X ) ) | → | isNeList#( X ) |
activate#( n__isPal( X ) ) | → | isPal#( X ) |
activate#( n__a ) | → | a# |
activate#( n__e ) | → | e# |
activate#( n__i ) | → | i# |
activate#( n__o ) | → | o# |
activate#( n__u ) | → | u# |
The dependency pairs are split into 2 component(s).
activate#( n____( X1 , X2 ) ) | → | activate#( X1 ) |
activate#( n____( X1 , X2 ) ) | → | activate#( X2 ) |
activate#( n__isList( X ) ) | → | isList#( X ) |
isList#( V ) | → | isNeList#( activate( V ) ) |
isNeList#( V ) | → | activate#( V ) |
activate#( n__isNeList( X ) ) | → | isNeList#( X ) |
isNeList#( n____( V1 , V2 ) ) | → | and#( isList( activate( V1 ) ) , n__isNeList( activate( V2 ) ) ) |
and#( tt , X ) | → | activate#( X ) |
activate#( n__isPal( X ) ) | → | isPal#( X ) |
isPal#( V ) | → | isNePal#( activate( V ) ) |
isNePal#( V ) | → | activate#( V ) |
isNePal#( n____( I , n____( P , I ) ) ) | → | and#( isQid( activate( I ) ) , n__isPal( activate( P ) ) ) |
isNePal#( n____( I , n____( P , I ) ) ) | → | activate#( I ) |
isNePal#( n____( I , n____( P , I ) ) ) | → | activate#( P ) |
isPal#( V ) | → | activate#( V ) |
isNeList#( n____( V1 , V2 ) ) | → | isList#( activate( V1 ) ) |
isList#( V ) | → | activate#( V ) |
isList#( n____( V1 , V2 ) ) | → | and#( isList( activate( V1 ) ) , n__isList( activate( V2 ) ) ) |
isList#( n____( V1 , V2 ) ) | → | isList#( activate( V1 ) ) |
isList#( n____( V1 , V2 ) ) | → | activate#( V1 ) |
isList#( n____( V1 , V2 ) ) | → | activate#( V2 ) |
isNeList#( n____( V1 , V2 ) ) | → | activate#( V1 ) |
isNeList#( n____( V1 , V2 ) ) | → | activate#( V2 ) |
isNeList#( n____( V1 , V2 ) ) | → | and#( isNeList( activate( V1 ) ) , n__isList( activate( V2 ) ) ) |
isNeList#( n____( V1 , V2 ) ) | → | isNeList#( activate( V1 ) ) |
Linear polynomial interpretation over the naturals
[isList# (x1) ] | = | x1 | |
[__ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[a] | = | 0 | |
[isNePal (x1) ] | = | 2 x1 | |
[isPal# (x1) ] | = | 2 x1 | |
[i] | = | 0 | |
[activate (x1) ] | = | x1 | |
[n__isList (x1) ] | = | x1 | |
[and (x1, x2) ] | = | x1 + x2 + 1 | |
[u] | = | 0 | |
[n__o] | = | 0 | |
[isNeList (x1) ] | = | x1 | |
[isPal (x1) ] | = | 2 x1 | |
[n____ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[isList (x1) ] | = | x1 | |
[and# (x1, x2) ] | = | x1 | |
[n__e] | = | 1 | |
[n__nil] | = | 1 | |
[n__isPal (x1) ] | = | 2 x1 | |
[nil] | = | 1 | |
[tt] | = | 0 | |
[o] | = | 0 | |
[e] | = | 1 | |
[n__a] | = | 0 | |
[n__i] | = | 0 | |
[isNeList# (x1) ] | = | x1 | |
[activate# (x1) ] | = | x1 | |
[isNePal# (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | 0 | |
[n__isNeList (x1) ] | = | x1 | |
[n__u] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
activate#( n__isList( X ) ) | → | isList#( X ) |
isList#( V ) | → | isNeList#( activate( V ) ) |
isNeList#( V ) | → | activate#( V ) |
activate#( n__isNeList( X ) ) | → | isNeList#( X ) |
and#( tt , X ) | → | activate#( X ) |
activate#( n__isPal( X ) ) | → | isPal#( X ) |
isPal#( V ) | → | isNePal#( activate( V ) ) |
isNePal#( V ) | → | activate#( V ) |
isPal#( V ) | → | activate#( V ) |
isList#( V ) | → | activate#( V ) |
The dependency pairs are split into 1 component(s).
isList#( V ) | → | isNeList#( activate( V ) ) |
isNeList#( V ) | → | activate#( V ) |
activate#( n__isList( X ) ) | → | isList#( X ) |
isList#( V ) | → | activate#( V ) |
activate#( n__isNeList( X ) ) | → | isNeList#( X ) |
activate#( n__isPal( X ) ) | → | isPal#( X ) |
isPal#( V ) | → | isNePal#( activate( V ) ) |
isNePal#( V ) | → | activate#( V ) |
isPal#( V ) | → | activate#( V ) |
Linear polynomial interpretation over the naturals
[isList# (x1) ] | = | x1 + 2 | |
[__ (x1, x2) ] | = | 2 x1 + x2 + 3 | |
[a] | = | 0 | |
[isNePal (x1) ] | = | 2 x1 | |
[isPal# (x1) ] | = | 2 x1 + 2 | |
[i] | = | 0 | |
[activate (x1) ] | = | x1 | |
[n__isList (x1) ] | = | x1 + 1 | |
[and (x1, x2) ] | = | x1 | |
[u] | = | 0 | |
[n__o] | = | 0 | |
[isNeList (x1) ] | = | x1 + 1 | |
[isPal (x1) ] | = | 2 x1 + 3 | |
[n____ (x1, x2) ] | = | 2 x1 + x2 + 3 | |
[isList (x1) ] | = | x1 + 1 | |
[n__e] | = | 0 | |
[n__nil] | = | 0 | |
[n__isPal (x1) ] | = | 2 x1 + 3 | |
[nil] | = | 0 | |
[tt] | = | 0 | |
[o] | = | 0 | |
[e] | = | 0 | |
[n__a] | = | 0 | |
[isNeList# (x1) ] | = | x1 + 1 | |
[n__i] | = | 0 | |
[activate# (x1) ] | = | x1 + 1 | |
[isNePal# (x1) ] | = | x1 + 1 | |
[n__u] | = | 0 | |
[isQid (x1) ] | = | x1 | |
[n__isNeList (x1) ] | = | x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
isNeList#( V ) | → | activate#( V ) |
activate#( n__isList( X ) ) | → | isList#( X ) |
isNePal#( V ) | → | activate#( V ) |
The dependency pairs are split into 0 component(s).
__#( __( X , Y ) , Z ) | → | __#( Y , Z ) |
__#( __( X , Y ) , Z ) | → | __#( X , __( Y , Z ) ) |
Linear polynomial interpretation over the naturals
[a] | = | 0 | |
[__ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[isNePal (x1) ] | = | 0 | |
[__# (x1, x2) ] | = | 2 x1 + x2 | |
[i] | = | 2 | |
[activate (x1) ] | = | 2 x1 | |
[n__isList (x1) ] | = | 0 | |
[and (x1, x2) ] | = | 3 x1 | |
[u] | = | 0 | |
[n__o] | = | 0 | |
[isNeList (x1) ] | = | 0 | |
[isPal (x1) ] | = | 0 | |
[n____ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[isList (x1) ] | = | 0 | |
[n__e] | = | 0 | |
[n__nil] | = | 2 | |
[n__isPal (x1) ] | = | 0 | |
[nil] | = | 2 | |
[tt] | = | 0 | |
[o] | = | 0 | |
[e] | = | 0 | |
[n__a] | = | 0 | |
[n__i] | = | 1 | |
[n__u] | = | 0 | |
[n__isNeList (x1) ] | = | 0 | |
[isQid (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.