| a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
| a____#( __( X , Y ) , Z ) | → | mark#( X ) |
| a____#( __( X , Y ) , Z ) | → | a____#( mark( Y ) , mark( Z ) ) |
| a____#( __( X , Y ) , Z ) | → | mark#( Y ) |
| a____#( __( X , Y ) , Z ) | → | mark#( Z ) |
| a____#( X , nil ) | → | mark#( X ) |
| a____#( nil , X ) | → | mark#( X ) |
| a__and#( tt , X ) | → | mark#( X ) |
| a__isList#( V ) | → | a__isNeList#( V ) |
| a__isList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isList( V2 ) ) |
| a__isList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
| a__isNeList#( V ) | → | a__isQid#( V ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isNeList( V2 ) ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isNeList( V1 ) , isList( V2 ) ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__isNeList#( V1 ) |
| a__isNePal#( V ) | → | a__isQid#( V ) |
| a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
| a__isNePal#( __( I , __( P , I ) ) ) | → | a__isQid#( I ) |
| a__isPal#( V ) | → | a__isNePal#( V ) |
| mark#( __( X1 , X2 ) ) | → | a____#( mark( X1 ) , mark( X2 ) ) |
| mark#( __( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( __( X1 , X2 ) ) | → | mark#( X2 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isList( X ) ) | → | a__isList#( X ) |
| mark#( isNeList( X ) ) | → | a__isNeList#( X ) |
| mark#( isQid( X ) ) | → | a__isQid#( X ) |
| mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
| mark#( isPal( X ) ) | → | a__isPal#( X ) |
The dependency pairs are split into 1 component(s).
| a____#( __( X , Y ) , Z ) | → | mark#( X ) |
| mark#( __( X1 , X2 ) ) | → | a____#( mark( X1 ) , mark( X2 ) ) |
| a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
| a____#( __( X , Y ) , Z ) | → | a____#( mark( Y ) , mark( Z ) ) |
| a____#( __( X , Y ) , Z ) | → | mark#( Y ) |
| mark#( __( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( __( X1 , X2 ) ) | → | mark#( X2 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isList( X ) ) | → | a__isList#( X ) |
| a__isList#( V ) | → | a__isNeList#( V ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isNeList( V2 ) ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
| a__isList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isList( V2 ) ) |
| a__isList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isNeList( V1 ) , isList( V2 ) ) |
| a__isNeList#( __( V1 , V2 ) ) | → | a__isNeList#( V1 ) |
| mark#( isNeList( X ) ) | → | a__isNeList#( X ) |
| mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
| a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
| mark#( isPal( X ) ) | → | a__isPal#( X ) |
| a__isPal#( V ) | → | a__isNePal#( V ) |
| a____#( __( X , Y ) , Z ) | → | mark#( Z ) |
| a____#( X , nil ) | → | mark#( X ) |
| a____#( nil , X ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
| [a] | = | 0 | |
| [__ (x1, x2) ] | = | x1 + x2 + 2 | |
| [a__isQid (x1) ] | = | 0 | |
| [isNePal (x1) ] | = | 0 | |
| [a____ (x1, x2) ] | = | x1 + x2 + 2 | |
| [i] | = | 0 | |
| [a__isPal# (x1) ] | = | 0 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [u] | = | 1 | |
| [a__isNeList# (x1) ] | = | 2 x1 | |
| [isNeList (x1) ] | = | 2 x1 | |
| [a__isPal (x1) ] | = | 0 | |
| [isPal (x1) ] | = | 0 | |
| [isList (x1) ] | = | 2 x1 | |
| [a____# (x1, x2) ] | = | x1 + x2 | |
| [mark (x1) ] | = | x1 | |
| [a__isList# (x1) ] | = | 2 x1 | |
| [a__and# (x1, x2) ] | = | x1 | |
| [mark# (x1) ] | = | x1 | |
| [nil] | = | 0 | |
| [a__isNeList (x1) ] | = | 2 x1 | |
| [tt] | = | 0 | |
| [o] | = | 0 | |
| [a__and (x1, x2) ] | = | x1 + x2 | |
| [e] | = | 0 | |
| [a__isNePal# (x1) ] | = | 0 | |
| [a__isNePal (x1) ] | = | 0 | |
| [isQid (x1) ] | = | 0 | |
| [a__isList (x1) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isList( X ) ) | → | a__isList#( X ) |
| a__isList#( V ) | → | a__isNeList#( V ) |
| mark#( isNeList( X ) ) | → | a__isNeList#( X ) |
| mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
| a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
| mark#( isPal( X ) ) | → | a__isPal#( X ) |
| a__isPal#( V ) | → | a__isNePal#( V ) |
| a____#( X , nil ) | → | mark#( X ) |
| a____#( nil , X ) | → | mark#( X ) |
The dependency pairs are split into 2 component(s).
| a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
Linear polynomial interpretation over the naturals
| [a] | = | 2 | |
| [__ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
| [mark (x1) ] | = | x1 | |
| [isNePal (x1) ] | = | 0 | |
| [a__isQid (x1) ] | = | 0 | |
| [a____ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
| [i] | = | 2 | |
| [nil] | = | 0 | |
| [a__isNeList (x1) ] | = | 0 | |
| [tt] | = | 0 | |
| [o] | = | 1 | |
| [a__and (x1, x2) ] | = | x1 | |
| [e] | = | 0 | |
| [u] | = | 0 | |
| [and (x1, x2) ] | = | x1 | |
| [a__isNePal (x1) ] | = | 0 | |
| [isNeList (x1) ] | = | 0 | |
| [a__isPal (x1) ] | = | 0 | |
| [isQid (x1) ] | = | 0 | |
| [a__isList (x1) ] | = | 0 | |
| [isPal (x1) ] | = | 0 | |
| [isList (x1) ] | = | 0 | |
| [a____# (x1, x2) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
| a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
| mark#( isPal( X ) ) | → | a__isPal#( X ) |
| a__isPal#( V ) | → | a__isNePal#( V ) |
Linear polynomial interpretation over the naturals
| [a] | = | 1 | |
| [__ (x1, x2) ] | = | 2 x1 + x2 | |
| [isNePal (x1) ] | = | 2 x1 | |
| [a__isQid (x1) ] | = | x1 | |
| [a____ (x1, x2) ] | = | 2 x1 + x2 | |
| [i] | = | 1 | |
| [a__isPal# (x1) ] | = | 2 x1 + 1 | |
| [u] | = | 1 | |
| [and (x1, x2) ] | = | 2 x1 + x2 | |
| [isNeList (x1) ] | = | x1 | |
| [a__isPal (x1) ] | = | 2 x1 | |
| [isPal (x1) ] | = | 2 x1 | |
| [isList (x1) ] | = | x1 | |
| [mark (x1) ] | = | x1 | |
| [a__and# (x1, x2) ] | = | 2 x1 + x2 | |
| [mark# (x1) ] | = | x1 + 1 | |
| [nil] | = | 1 | |
| [a__isNeList (x1) ] | = | x1 | |
| [tt] | = | 1 | |
| [a__and (x1, x2) ] | = | 2 x1 + x2 | |
| [o] | = | 1 | |
| [e] | = | 1 | |
| [a__isNePal# (x1) ] | = | x1 + 1 | |
| [a__isNePal (x1) ] | = | 2 x1 | |
| [isQid (x1) ] | = | x1 | |
| [a__isList (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
| mark#( isPal( X ) ) | → | a__isPal#( X ) |
| a__isPal#( V ) | → | a__isNePal#( V ) |
The dependency pairs are split into 1 component(s).
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
| [a] | = | 3 | |
| [__ (x1, x2) ] | = | 2 x1 + x2 + 2 | |
| [mark (x1) ] | = | x1 | |
| [isNePal (x1) ] | = | 2 x1 | |
| [a__isQid (x1) ] | = | x1 | |
| [a____ (x1, x2) ] | = | 2 x1 + x2 + 2 | |
| [mark# (x1) ] | = | 2 x1 | |
| [i] | = | 3 | |
| [nil] | = | 0 | |
| [a__isNeList (x1) ] | = | 2 x1 | |
| [tt] | = | 0 | |
| [o] | = | 1 | |
| [a__and (x1, x2) ] | = | 2 x1 + x2 + 1 | |
| [e] | = | 3 | |
| [and (x1, x2) ] | = | 2 x1 + x2 + 1 | |
| [u] | = | 3 | |
| [a__isNePal (x1) ] | = | 2 x1 | |
| [isNeList (x1) ] | = | 2 x1 | |
| [a__isPal (x1) ] | = | 2 x1 | |
| [isQid (x1) ] | = | x1 | |
| [a__isList (x1) ] | = | 2 x1 | |
| [isPal (x1) ] | = | 2 x1 | |
| [isList (x1) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.