a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
a____#( __( X , Y ) , Z ) | → | mark#( X ) |
a____#( __( X , Y ) , Z ) | → | a____#( mark( Y ) , mark( Z ) ) |
a____#( __( X , Y ) , Z ) | → | mark#( Y ) |
a____#( __( X , Y ) , Z ) | → | mark#( Z ) |
a____#( X , nil ) | → | mark#( X ) |
a____#( nil , X ) | → | mark#( X ) |
a__and#( tt , X ) | → | mark#( X ) |
a__isList#( V ) | → | a__isNeList#( V ) |
a__isList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isList( V2 ) ) |
a__isList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
a__isNeList#( V ) | → | a__isQid#( V ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isNeList( V2 ) ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isNeList( V1 ) , isList( V2 ) ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__isNeList#( V1 ) |
a__isNePal#( V ) | → | a__isQid#( V ) |
a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
a__isNePal#( __( I , __( P , I ) ) ) | → | a__isQid#( I ) |
a__isPal#( V ) | → | a__isNePal#( V ) |
mark#( __( X1 , X2 ) ) | → | a____#( mark( X1 ) , mark( X2 ) ) |
mark#( __( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( __( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isList( X ) ) | → | a__isList#( X ) |
mark#( isNeList( X ) ) | → | a__isNeList#( X ) |
mark#( isQid( X ) ) | → | a__isQid#( X ) |
mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
mark#( isPal( X ) ) | → | a__isPal#( X ) |
The dependency pairs are split into 1 component(s).
a____#( __( X , Y ) , Z ) | → | mark#( X ) |
mark#( __( X1 , X2 ) ) | → | a____#( mark( X1 ) , mark( X2 ) ) |
a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
a____#( __( X , Y ) , Z ) | → | a____#( mark( Y ) , mark( Z ) ) |
a____#( __( X , Y ) , Z ) | → | mark#( Y ) |
mark#( __( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( __( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isList( X ) ) | → | a__isList#( X ) |
a__isList#( V ) | → | a__isNeList#( V ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isNeList( V2 ) ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
a__isList#( __( V1 , V2 ) ) | → | a__and#( a__isList( V1 ) , isList( V2 ) ) |
a__isList#( __( V1 , V2 ) ) | → | a__isList#( V1 ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__and#( a__isNeList( V1 ) , isList( V2 ) ) |
a__isNeList#( __( V1 , V2 ) ) | → | a__isNeList#( V1 ) |
mark#( isNeList( X ) ) | → | a__isNeList#( X ) |
mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
mark#( isPal( X ) ) | → | a__isPal#( X ) |
a__isPal#( V ) | → | a__isNePal#( V ) |
a____#( __( X , Y ) , Z ) | → | mark#( Z ) |
a____#( X , nil ) | → | mark#( X ) |
a____#( nil , X ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[a] | = | 0 | |
[__ (x1, x2) ] | = | x1 + x2 + 2 | |
[a__isQid (x1) ] | = | 0 | |
[isNePal (x1) ] | = | 0 | |
[a____ (x1, x2) ] | = | x1 + x2 + 2 | |
[i] | = | 0 | |
[a__isPal# (x1) ] | = | 0 | |
[and (x1, x2) ] | = | x1 + x2 | |
[u] | = | 1 | |
[a__isNeList# (x1) ] | = | 2 x1 | |
[isNeList (x1) ] | = | 2 x1 | |
[a__isPal (x1) ] | = | 0 | |
[isPal (x1) ] | = | 0 | |
[isList (x1) ] | = | 2 x1 | |
[a____# (x1, x2) ] | = | x1 + x2 | |
[mark (x1) ] | = | x1 | |
[a__isList# (x1) ] | = | 2 x1 | |
[a__and# (x1, x2) ] | = | x1 | |
[mark# (x1) ] | = | x1 | |
[nil] | = | 0 | |
[a__isNeList (x1) ] | = | 2 x1 | |
[tt] | = | 0 | |
[o] | = | 0 | |
[a__and (x1, x2) ] | = | x1 + x2 | |
[e] | = | 0 | |
[a__isNePal# (x1) ] | = | 0 | |
[a__isNePal (x1) ] | = | 0 | |
[isQid (x1) ] | = | 0 | |
[a__isList (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isList( X ) ) | → | a__isList#( X ) |
a__isList#( V ) | → | a__isNeList#( V ) |
mark#( isNeList( X ) ) | → | a__isNeList#( X ) |
mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
mark#( isPal( X ) ) | → | a__isPal#( X ) |
a__isPal#( V ) | → | a__isNePal#( V ) |
a____#( X , nil ) | → | mark#( X ) |
a____#( nil , X ) | → | mark#( X ) |
The dependency pairs are split into 2 component(s).
a____#( __( X , Y ) , Z ) | → | a____#( mark( X ) , a____( mark( Y ) , mark( Z ) ) ) |
Linear polynomial interpretation over the naturals
[a] | = | 2 | |
[__ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[mark (x1) ] | = | x1 | |
[isNePal (x1) ] | = | 0 | |
[a__isQid (x1) ] | = | 0 | |
[a____ (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[i] | = | 2 | |
[nil] | = | 0 | |
[a__isNeList (x1) ] | = | 0 | |
[tt] | = | 0 | |
[o] | = | 1 | |
[a__and (x1, x2) ] | = | x1 | |
[e] | = | 0 | |
[u] | = | 0 | |
[and (x1, x2) ] | = | x1 | |
[a__isNePal (x1) ] | = | 0 | |
[isNeList (x1) ] | = | 0 | |
[a__isPal (x1) ] | = | 0 | |
[isQid (x1) ] | = | 0 | |
[a__isList (x1) ] | = | 0 | |
[isPal (x1) ] | = | 0 | |
[isList (x1) ] | = | 0 | |
[a____# (x1, x2) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
a__and#( tt , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
a__isNePal#( __( I , __( P , I ) ) ) | → | a__and#( a__isQid( I ) , isPal( P ) ) |
mark#( isPal( X ) ) | → | a__isPal#( X ) |
a__isPal#( V ) | → | a__isNePal#( V ) |
Linear polynomial interpretation over the naturals
[a] | = | 1 | |
[__ (x1, x2) ] | = | 2 x1 + x2 | |
[isNePal (x1) ] | = | 2 x1 | |
[a__isQid (x1) ] | = | x1 | |
[a____ (x1, x2) ] | = | 2 x1 + x2 | |
[i] | = | 1 | |
[a__isPal# (x1) ] | = | 2 x1 + 1 | |
[u] | = | 1 | |
[and (x1, x2) ] | = | 2 x1 + x2 | |
[isNeList (x1) ] | = | x1 | |
[a__isPal (x1) ] | = | 2 x1 | |
[isPal (x1) ] | = | 2 x1 | |
[isList (x1) ] | = | x1 | |
[mark (x1) ] | = | x1 | |
[a__and# (x1, x2) ] | = | 2 x1 + x2 | |
[mark# (x1) ] | = | x1 + 1 | |
[nil] | = | 1 | |
[a__isNeList (x1) ] | = | x1 | |
[tt] | = | 1 | |
[a__and (x1, x2) ] | = | 2 x1 + x2 | |
[o] | = | 1 | |
[e] | = | 1 | |
[a__isNePal# (x1) ] | = | x1 + 1 | |
[a__isNePal (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | x1 | |
[a__isList (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNePal( X ) ) | → | a__isNePal#( X ) |
mark#( isPal( X ) ) | → | a__isPal#( X ) |
a__isPal#( V ) | → | a__isNePal#( V ) |
The dependency pairs are split into 1 component(s).
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[a] | = | 3 | |
[__ (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[mark (x1) ] | = | x1 | |
[isNePal (x1) ] | = | 2 x1 | |
[a__isQid (x1) ] | = | x1 | |
[a____ (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[mark# (x1) ] | = | 2 x1 | |
[i] | = | 3 | |
[nil] | = | 0 | |
[a__isNeList (x1) ] | = | 2 x1 | |
[tt] | = | 0 | |
[o] | = | 1 | |
[a__and (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[e] | = | 3 | |
[and (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[u] | = | 3 | |
[a__isNePal (x1) ] | = | 2 x1 | |
[isNeList (x1) ] | = | 2 x1 | |
[a__isPal (x1) ] | = | 2 x1 | |
[isQid (x1) ] | = | x1 | |
[a__isList (x1) ] | = | 2 x1 | |
[isPal (x1) ] | = | 2 x1 | |
[isList (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.