Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | U11 : symb | U12 : symb | __ : symb | activate : symb | isNePal : symb | nil : symb | tt : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.U11 => 1 | M.U12 => 1 | M.__ => 2 | M.activate => 1 | M.isNePal => 1 | M.nil => 0 | M.tt => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition U11 x1 := F0 M.U11 (Vcons x1 Vnil). Definition U12 x1 := F0 M.U12 (Vcons x1 Vnil). Definition __ x2 x1 := F0 M.__ (Vcons x2 (Vcons x1 Vnil)). Definition activate x1 := F0 M.activate (Vcons x1 Vnil). Definition isNePal x1 := F0 M.isNePal (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition tt := F0 M.tt Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.__ (S0.__ (V0 0) (V0 1)) (V0 2)) (S0.__ (V0 0) (S0.__ (V0 1) (V0 2))) :: R0 (S0.__ (V0 0) S0.nil) (V0 0) :: R0 (S0.__ S0.nil (V0 0)) (V0 0) :: R0 (S0.U11 S0.tt) (S0.U12 S0.tt) :: R0 (S0.U12 S0.tt) S0.tt :: R0 (S0.isNePal (S0.__ (V0 0) (S0.__ (V0 1) (V0 0)))) (S0.U11 S0.tt) :: R0 (S0.activate (V0 0)) (V0 0) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hU11 x1 := F1 (hd_symb s1_p M.U11) (Vcons x1 Vnil). Definition U11 x1 := F1 (int_symb s1_p M.U11) (Vcons x1 Vnil). Definition hU12 x1 := F1 (hd_symb s1_p M.U12) (Vcons x1 Vnil). Definition U12 x1 := F1 (int_symb s1_p M.U12) (Vcons x1 Vnil). Definition h__ x2 x1 := F1 (hd_symb s1_p M.__) (Vcons x2 (Vcons x1 Vnil)). Definition __ x2 x1 := F1 (int_symb s1_p M.__) (Vcons x2 (Vcons x1 Vnil)). Definition hactivate x1 := F1 (hd_symb s1_p M.activate) (Vcons x1 Vnil). Definition activate x1 := F1 (int_symb s1_p M.activate) (Vcons x1 Vnil). Definition hisNePal x1 := F1 (hd_symb s1_p M.isNePal) (Vcons x1 Vnil). Definition isNePal x1 := F1 (int_symb s1_p M.isNePal) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition htt := F1 (hd_symb s1_p M.tt) Vnil. Definition tt := F1 (int_symb s1_p M.tt) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hU11 (S1.tt)) (S1.hU12 (S1.tt)) :: nil) :: ( R1 (S1.hisNePal (S1.__ (V1 0) (S1.__ (V1 1) (V1 0)))) (S1.hU11 (S1.tt)) :: nil) :: ( R1 (S1.h__ (S1.__ (V1 0) (V1 1)) (V1 2)) (S1.h__ (V1 1) (V1 2)) :: R1 (S1.h__ (S1.__ (V1 0) (V1 1)) (V1 2)) (S1.h__ (V1 0) (S1.__ (V1 1) (V1 2))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.__) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.__) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.U11) => nil | (int_symb M.U11) => nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.U12) => nil | (int_symb M.U12) => nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => nil | (hd_symb M.activate) => nil | (int_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. right. PI1.prove_termination. termination_trivial. Qed.