Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | __ : symb | active : symb | and : symb | isNePal : symb | mark : symb | nil : symb | ok : symb | proper : symb | top : symb | tt : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.__ => 2 | M.active => 1 | M.and => 2 | M.isNePal => 1 | M.mark => 1 | M.nil => 0 | M.ok => 1 | M.proper => 1 | M.top => 1 | M.tt => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition __ x2 x1 := F0 M.__ (Vcons x2 (Vcons x1 Vnil)). Definition active x1 := F0 M.active (Vcons x1 Vnil). Definition and x2 x1 := F0 M.and (Vcons x2 (Vcons x1 Vnil)). Definition isNePal x1 := F0 M.isNePal (Vcons x1 Vnil). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition ok x1 := F0 M.ok (Vcons x1 Vnil). Definition proper x1 := F0 M.proper (Vcons x1 Vnil). Definition top x1 := F0 M.top (Vcons x1 Vnil). Definition tt := F0 M.tt Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.active (S0.__ (S0.__ (V0 0) (V0 1)) (V0 2))) (S0.mark (S0.__ (V0 0) (S0.__ (V0 1) (V0 2)))) :: R0 (S0.active (S0.__ (V0 0) S0.nil)) (S0.mark (V0 0)) :: R0 (S0.active (S0.__ S0.nil (V0 0))) (S0.mark (V0 0)) :: R0 (S0.active (S0.and S0.tt (V0 0))) (S0.mark (V0 0)) :: R0 (S0.active (S0.isNePal (S0.__ (V0 0) (S0.__ (V0 1) (V0 0))))) (S0.mark S0.tt) :: R0 (S0.active (S0.__ (V0 0) (V0 1))) (S0.__ (S0.active (V0 0)) (V0 1)) :: R0 (S0.active (S0.__ (V0 0) (V0 1))) (S0.__ (V0 0) (S0.active (V0 1))) :: R0 (S0.active (S0.and (V0 0) (V0 1))) (S0.and (S0.active (V0 0)) (V0 1)) :: R0 (S0.active (S0.isNePal (V0 0))) (S0.isNePal (S0.active (V0 0))) :: R0 (S0.__ (S0.mark (V0 0)) (V0 1)) (S0.mark (S0.__ (V0 0) (V0 1))) :: R0 (S0.__ (V0 0) (S0.mark (V0 1))) (S0.mark (S0.__ (V0 0) (V0 1))) :: R0 (S0.and (S0.mark (V0 0)) (V0 1)) (S0.mark (S0.and (V0 0) (V0 1))) :: R0 (S0.isNePal (S0.mark (V0 0))) (S0.mark (S0.isNePal (V0 0))) :: R0 (S0.proper (S0.__ (V0 0) (V0 1))) (S0.__ (S0.proper (V0 0)) (S0.proper (V0 1))) :: R0 (S0.proper S0.nil) (S0.ok S0.nil) :: R0 (S0.proper (S0.and (V0 0) (V0 1))) (S0.and (S0.proper (V0 0)) (S0.proper (V0 1))) :: R0 (S0.proper S0.tt) (S0.ok S0.tt) :: R0 (S0.proper (S0.isNePal (V0 0))) (S0.isNePal (S0.proper (V0 0))) :: R0 (S0.__ (S0.ok (V0 0)) (S0.ok (V0 1))) (S0.ok (S0.__ (V0 0) (V0 1))) :: R0 (S0.and (S0.ok (V0 0)) (S0.ok (V0 1))) (S0.ok (S0.and (V0 0) (V0 1))) :: R0 (S0.isNePal (S0.ok (V0 0))) (S0.ok (S0.isNePal (V0 0))) :: R0 (S0.top (S0.mark (V0 0))) (S0.top (S0.proper (V0 0))) :: R0 (S0.top (S0.ok (V0 0))) (S0.top (S0.active (V0 0))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h__ x2 x1 := F1 (hd_symb s1_p M.__) (Vcons x2 (Vcons x1 Vnil)). Definition __ x2 x1 := F1 (int_symb s1_p M.__) (Vcons x2 (Vcons x1 Vnil)). Definition hactive x1 := F1 (hd_symb s1_p M.active) (Vcons x1 Vnil). Definition active x1 := F1 (int_symb s1_p M.active) (Vcons x1 Vnil). Definition hand x2 x1 := F1 (hd_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F1 (int_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition hisNePal x1 := F1 (hd_symb s1_p M.isNePal) (Vcons x1 Vnil). Definition isNePal x1 := F1 (int_symb s1_p M.isNePal) (Vcons x1 Vnil). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hok x1 := F1 (hd_symb s1_p M.ok) (Vcons x1 Vnil). Definition ok x1 := F1 (int_symb s1_p M.ok) (Vcons x1 Vnil). Definition hproper x1 := F1 (hd_symb s1_p M.proper) (Vcons x1 Vnil). Definition proper x1 := F1 (int_symb s1_p M.proper) (Vcons x1 Vnil). Definition htop x1 := F1 (hd_symb s1_p M.top) (Vcons x1 Vnil). Definition top x1 := F1 (int_symb s1_p M.top) (Vcons x1 Vnil). Definition htt := F1 (hd_symb s1_p M.tt) Vnil. Definition tt := F1 (int_symb s1_p M.tt) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hisNePal (S1.ok (V1 0))) (S1.hisNePal (V1 0)) :: R1 (S1.hisNePal (S1.mark (V1 0))) (S1.hisNePal (V1 0)) :: nil) :: ( R1 (S1.hproper (S1.isNePal (V1 0))) (S1.hisNePal (S1.proper (V1 0))) :: nil) :: ( R1 (S1.hand (S1.ok (V1 0)) (S1.ok (V1 1))) (S1.hand (V1 0) (V1 1)) :: R1 (S1.hand (S1.mark (V1 0)) (V1 1)) (S1.hand (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hproper (S1.and (V1 0) (V1 1))) (S1.hand (S1.proper (V1 0)) (S1.proper (V1 1))) :: nil) :: ( R1 (S1.h__ (V1 0) (S1.mark (V1 1))) (S1.h__ (V1 0) (V1 1)) :: R1 (S1.h__ (S1.mark (V1 0)) (V1 1)) (S1.h__ (V1 0) (V1 1)) :: R1 (S1.h__ (S1.ok (V1 0)) (S1.ok (V1 1))) (S1.h__ (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hproper (S1.__ (V1 0) (V1 1))) (S1.h__ (S1.proper (V1 0)) (S1.proper (V1 1))) :: nil) :: ( R1 (S1.hproper (S1.__ (V1 0) (V1 1))) (S1.hproper (V1 1)) :: R1 (S1.hproper (S1.__ (V1 0) (V1 1))) (S1.hproper (V1 0)) :: R1 (S1.hproper (S1.and (V1 0) (V1 1))) (S1.hproper (V1 0)) :: R1 (S1.hproper (S1.and (V1 0) (V1 1))) (S1.hproper (V1 1)) :: R1 (S1.hproper (S1.isNePal (V1 0))) (S1.hproper (V1 0)) :: nil) :: ( R1 (S1.htop (S1.mark (V1 0))) (S1.hproper (V1 0)) :: nil) :: ( R1 (S1.hactive (S1.isNePal (V1 0))) (S1.hisNePal (S1.active (V1 0))) :: nil) :: ( R1 (S1.hactive (S1.and (V1 0) (V1 1))) (S1.hand (S1.active (V1 0)) (V1 1)) :: nil) :: ( R1 (S1.hactive (S1.__ (V1 0) (V1 1))) (S1.h__ (V1 0) (S1.active (V1 1))) :: nil) :: ( R1 (S1.hactive (S1.__ (V1 0) (V1 1))) (S1.h__ (S1.active (V1 0)) (V1 1)) :: nil) :: ( R1 (S1.hactive (S1.__ (S1.__ (V1 0) (V1 1)) (V1 2))) (S1.h__ (V1 1) (V1 2)) :: nil) :: ( R1 (S1.hactive (S1.__ (S1.__ (V1 0) (V1 1)) (V1 2))) (S1.h__ (V1 0) (S1.__ (V1 1) (V1 2))) :: nil) :: ( R1 (S1.hactive (S1.__ (V1 0) (V1 1))) (S1.hactive (V1 1)) :: R1 (S1.hactive (S1.__ (V1 0) (V1 1))) (S1.hactive (V1 0)) :: R1 (S1.hactive (S1.and (V1 0) (V1 1))) (S1.hactive (V1 0)) :: R1 (S1.hactive (S1.isNePal (V1 0))) (S1.hactive (V1 0)) :: nil) :: ( R1 (S1.htop (S1.ok (V1 0))) (S1.hactive (V1 0)) :: nil) :: ( R1 (S1.htop (S1.ok (V1 0))) (S1.htop (S1.active (V1 0))) :: R1 (S1.htop (S1.mark (V1 0))) (S1.htop (S1.proper (V1 0))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (2%Z, Vnil) :: nil | (hd_symb M.isNePal) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.and) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (3%Z, Vnil) :: nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* polynomial interpretation 5 *) Module PIS5 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.__) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (1%Z, Vnil) :: nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS5. Module PI5 := PolyInt PIS5. (* polynomial interpretation 6 *) Module PIS6 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.__) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS6. Module PI6 := PolyInt PIS6. (* polynomial interpretation 7 *) Module PIS7 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.__) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS7. Module PI7 := PolyInt PIS7. (* polynomial interpretation 8 *) Module PIS8 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS8. Module PI8 := PolyInt PIS8. (* polynomial interpretation 9 *) Module PIS9 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (2%Z, Vnil) :: nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.proper) => (2%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS9. Module PI9 := PolyInt PIS9. (* polynomial interpretation 10 *) Module PIS10 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.active) => (1%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (1%Z, Vnil) :: nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (1%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => nil | (hd_symb M.top) => nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS10. Module PI10 := PolyInt PIS10. (* polynomial interpretation 11 *) Module PIS11 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (1%Z, Vnil) :: nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.top) => (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS11. Module PI11 := PolyInt PIS11. (* polynomial interpretation 12 *) Module PIS12 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.__) => nil | (int_symb M.__) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M.and) => nil | (int_symb M.and) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (2%Z, Vnil) :: nil | (hd_symb M.isNePal) => nil | (int_symb M.isNePal) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.top) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS12. Module PI12 := PolyInt PIS12. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. right. PI1.prove_termination. PI2.prove_termination. termination_trivial. left. co_scc. right. PI3.prove_termination. PI4.prove_termination. termination_trivial. left. co_scc. right. PI5.prove_termination. PI6.prove_termination. PI7.prove_termination. termination_trivial. left. co_scc. right. PI8.prove_termination. PI9.prove_termination. termination_trivial. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. right. PI10.prove_termination. termination_trivial. left. co_scc. right. PI11.prove_termination. PI12.prove_termination. termination_trivial. Qed.