a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNatKind( V1 ) , V1 , V2 ) |
a__U11#( tt , V1 , V2 ) | → | a__isNatKind#( V1 ) |
a__U12#( tt , V1 , V2 ) | → | a__U13#( a__isNatKind( V2 ) , V1 , V2 ) |
a__U12#( tt , V1 , V2 ) | → | a__isNatKind#( V2 ) |
a__U13#( tt , V1 , V2 ) | → | a__U14#( a__isNatKind( V2 ) , V1 , V2 ) |
a__U13#( tt , V1 , V2 ) | → | a__isNatKind#( V2 ) |
a__U14#( tt , V1 , V2 ) | → | a__U15#( a__isNat( V1 ) , V2 ) |
a__U14#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
a__U15#( tt , V2 ) | → | a__U16#( a__isNat( V2 ) ) |
a__U15#( tt , V2 ) | → | a__isNat#( V2 ) |
a__U21#( tt , V1 ) | → | a__U22#( a__isNatKind( V1 ) , V1 ) |
a__U21#( tt , V1 ) | → | a__isNatKind#( V1 ) |
a__U22#( tt , V1 ) | → | a__U23#( a__isNat( V1 ) ) |
a__U22#( tt , V1 ) | → | a__isNat#( V1 ) |
a__U31#( tt , V2 ) | → | a__U32#( a__isNatKind( V2 ) ) |
a__U31#( tt , V2 ) | → | a__isNatKind#( V2 ) |
a__U51#( tt , N ) | → | a__U52#( a__isNatKind( N ) , N ) |
a__U51#( tt , N ) | → | a__isNatKind#( N ) |
a__U52#( tt , N ) | → | mark#( N ) |
a__U61#( tt , M , N ) | → | a__U62#( a__isNatKind( M ) , M , N ) |
a__U61#( tt , M , N ) | → | a__isNatKind#( M ) |
a__U62#( tt , M , N ) | → | a__U63#( a__isNat( N ) , M , N ) |
a__U62#( tt , M , N ) | → | a__isNat#( N ) |
a__U63#( tt , M , N ) | → | a__U64#( a__isNatKind( N ) , M , N ) |
a__U63#( tt , M , N ) | → | a__isNatKind#( N ) |
a__U64#( tt , M , N ) | → | a__plus#( mark( N ) , mark( M ) ) |
a__U64#( tt , M , N ) | → | mark#( N ) |
a__U64#( tt , M , N ) | → | mark#( M ) |
a__isNat#( plus( V1 , V2 ) ) | → | a__U11#( a__isNatKind( V1 ) , V1 , V2 ) |
a__isNat#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
a__isNatKind#( plus( V1 , V2 ) ) | → | a__U31#( a__isNatKind( V1 ) , V2 ) |
a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
a__isNatKind#( s( V1 ) ) | → | a__U41#( a__isNatKind( V1 ) ) |
a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
a__plus#( N , 0 ) | → | a__U51#( a__isNat( N ) , N ) |
a__plus#( N , 0 ) | → | a__isNat#( N ) |
a__plus#( N , s( M ) ) | → | a__U61#( a__isNat( M ) , M , N ) |
a__plus#( N , s( M ) ) | → | a__isNat#( M ) |
mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U12( X1 , X2 , X3 ) ) | → | a__U12#( mark( X1 ) , X2 , X3 ) |
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
mark#( U13( X1 , X2 , X3 ) ) | → | a__U13#( mark( X1 ) , X2 , X3 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | a__U14#( mark( X1 ) , X2 , X3 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | a__U15#( mark( X1 ) , X2 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( isNat( X ) ) | → | a__isNat#( X ) |
mark#( U16( X ) ) | → | a__U16#( mark( X ) ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U21( X1 , X2 ) ) | → | a__U21#( mark( X1 ) , X2 ) |
mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U22( X1 , X2 ) ) | → | a__U22#( mark( X1 ) , X2 ) |
mark#( U22( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U23( X ) ) | → | a__U23#( mark( X ) ) |
mark#( U23( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | a__U31#( mark( X1 ) , X2 ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | a__U32#( mark( X ) ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | a__U41#( mark( X ) ) |
mark#( U41( X ) ) | → | mark#( X ) |
mark#( U51( X1 , X2 ) ) | → | a__U51#( mark( X1 ) , X2 ) |
mark#( U51( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U52( X1 , X2 ) ) | → | a__U52#( mark( X1 ) , X2 ) |
mark#( U52( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U61( X1 , X2 , X3 ) ) | → | a__U61#( mark( X1 ) , X2 , X3 ) |
mark#( U61( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U62( X1 , X2 , X3 ) ) | → | a__U62#( mark( X1 ) , X2 , X3 ) |
mark#( U62( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U63( X1 , X2 , X3 ) ) | → | a__U63#( mark( X1 ) , X2 , X3 ) |
mark#( U63( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U64( X1 , X2 , X3 ) ) | → | a__U64#( mark( X1 ) , X2 , X3 ) |
mark#( U64( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | a__plus#( mark( X1 ) , mark( X2 ) ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 3 component(s).
mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U22( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U23( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
mark#( U51( X1 , X2 ) ) | → | a__U51#( mark( X1 ) , X2 ) |
a__U51#( tt , N ) | → | a__U52#( a__isNatKind( N ) , N ) |
a__U52#( tt , N ) | → | mark#( N ) |
mark#( U51( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U52( X1 , X2 ) ) | → | a__U52#( mark( X1 ) , X2 ) |
mark#( U52( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U61( X1 , X2 , X3 ) ) | → | a__U61#( mark( X1 ) , X2 , X3 ) |
a__U61#( tt , M , N ) | → | a__U62#( a__isNatKind( M ) , M , N ) |
a__U62#( tt , M , N ) | → | a__U63#( a__isNat( N ) , M , N ) |
a__U63#( tt , M , N ) | → | a__U64#( a__isNatKind( N ) , M , N ) |
a__U64#( tt , M , N ) | → | a__plus#( mark( N ) , mark( M ) ) |
a__plus#( N , 0 ) | → | a__U51#( a__isNat( N ) , N ) |
a__plus#( N , s( M ) ) | → | a__U61#( a__isNat( M ) , M , N ) |
a__U64#( tt , M , N ) | → | mark#( N ) |
mark#( U61( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U62( X1 , X2 , X3 ) ) | → | a__U62#( mark( X1 ) , X2 , X3 ) |
mark#( U62( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U63( X1 , X2 , X3 ) ) | → | a__U63#( mark( X1 ) , X2 , X3 ) |
mark#( U63( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U64( X1 , X2 , X3 ) ) | → | a__U64#( mark( X1 ) , X2 , X3 ) |
a__U64#( tt , M , N ) | → | mark#( M ) |
mark#( U64( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | a__plus#( mark( X1 ) , mark( X2 ) ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | x1 + x2 + 1 | |
[a__U16 (x1) ] | = | 3 x1 | |
[a__plus (x1, x2) ] | = | 2 x1 + x2 | |
[0] | = | 1 | |
[U21 (x1, x2) ] | = | x1 | |
[U31 (x1, x2) ] | = | x1 | |
[a__U23 (x1) ] | = | 2 x1 | |
[a__U12 (x1, x2, x3) ] | = | 2 x1 | |
[a__U14 (x1, x2, x3) ] | = | x1 | |
[U12 (x1, x2, x3) ] | = | 2 x1 | |
[a__U52# (x1, x2) ] | = | 2 x1 | |
[a__U51# (x1, x2) ] | = | 2 x1 + 2 | |
[a__U21 (x1, x2) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[a__U13 (x1, x2, x3) ] | = | x1 | |
[U63 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 + 1 | |
[a__U41 (x1) ] | = | 3 x1 | |
[tt] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 + 1 | |
[a__U22 (x1, x2) ] | = | 2 x1 | |
[a__U32 (x1) ] | = | x1 | |
[U41 (x1) ] | = | 3 x1 | |
[a__isNatKind (x1) ] | = | 0 | |
[a__U64# (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[plus (x1, x2) ] | = | 2 x1 + x2 | |
[U23 (x1) ] | = | 2 x1 | |
[a__isNat (x1) ] | = | 0 | |
[a__U62# (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 | |
[a__plus# (x1, x2) ] | = | 2 x1 + 2 x2 | |
[a__U63 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 + 1 | |
[U64 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 + 1 | |
[U11 (x1, x2, x3) ] | = | x1 | |
[a__U63# (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 1 | |
[a__U64 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 + 1 | |
[U61 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 + 1 | |
[U15 (x1, x2) ] | = | x1 | |
[a__U31 (x1, x2) ] | = | x1 | |
[U22 (x1, x2) ] | = | 2 x1 | |
[a__U15 (x1, x2) ] | = | x1 | |
[U32 (x1) ] | = | x1 | |
[s (x1) ] | = | x1 + 1 | |
[U14 (x1, x2, x3) ] | = | x1 | |
[a__U61# (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 | |
[mark (x1) ] | = | x1 | |
[U13 (x1, x2, x3) ] | = | x1 | |
[a__U52 (x1, x2) ] | = | 2 x1 + x2 | |
[U52 (x1, x2) ] | = | 2 x1 + x2 | |
[U51 (x1, x2) ] | = | x1 + x2 + 1 | |
[a__U62 (x1, x2, x3) ] | = | x1 + x2 + 2 x3 + 1 | |
[U16 (x1) ] | = | 3 x1 | |
[isNat (x1) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | x1 | |
[U62 (x1, x2, x3) ] | = | x1 + x2 + 2 x3 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U22( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U23( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
mark#( U51( X1 , X2 ) ) | → | a__U51#( mark( X1 ) , X2 ) |
a__U52#( tt , N ) | → | mark#( N ) |
mark#( U52( X1 , X2 ) ) | → | a__U52#( mark( X1 ) , X2 ) |
mark#( U52( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U61( X1 , X2 , X3 ) ) | → | a__U61#( mark( X1 ) , X2 , X3 ) |
a__U61#( tt , M , N ) | → | a__U62#( a__isNatKind( M ) , M , N ) |
a__U64#( tt , M , N ) | → | a__plus#( mark( N ) , mark( M ) ) |
a__plus#( N , 0 ) | → | a__U51#( a__isNat( N ) , N ) |
a__plus#( N , s( M ) ) | → | a__U61#( a__isNat( M ) , M , N ) |
a__U64#( tt , M , N ) | → | mark#( N ) |
mark#( U62( X1 , X2 , X3 ) ) | → | a__U62#( mark( X1 ) , X2 , X3 ) |
a__U64#( tt , M , N ) | → | mark#( M ) |
mark#( plus( X1 , X2 ) ) | → | a__plus#( mark( X1 ) , mark( X2 ) ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
The dependency pairs are split into 1 component(s).
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U22( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U23( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
mark#( U52( X1 , X2 ) ) | → | a__U52#( mark( X1 ) , X2 ) |
a__U52#( tt , N ) | → | mark#( N ) |
mark#( U52( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | x1 | |
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | 3 x1 | |
[a__U64 (x1, x2, x3) ] | = | 0 | |
[U61 (x1, x2, x3) ] | = | 1 | |
[a__U16 (x1) ] | = | x1 | |
[a__plus (x1, x2) ] | = | 3 x1 + 2 x2 + 2 | |
[0] | = | 2 | |
[U15 (x1, x2) ] | = | 2 x1 | |
[U21 (x1, x2) ] | = | 2 x1 | |
[a__U31 (x1, x2) ] | = | 2 x1 | |
[U31 (x1, x2) ] | = | 2 x1 | |
[U22 (x1, x2) ] | = | x1 | |
[a__U23 (x1) ] | = | 2 x1 | |
[a__U12 (x1, x2, x3) ] | = | x1 | |
[a__U15 (x1, x2) ] | = | 2 x1 | |
[U32 (x1) ] | = | 2 x1 | |
[a__U14 (x1, x2, x3) ] | = | 2 x1 | |
[s (x1) ] | = | 0 | |
[U12 (x1, x2, x3) ] | = | x1 | |
[U14 (x1, x2, x3) ] | = | 2 x1 | |
[a__U52# (x1, x2) ] | = | 2 x1 | |
[mark (x1) ] | = | 2 x1 | |
[U13 (x1, x2, x3) ] | = | 2 x1 | |
[a__U21 (x1, x2) ] | = | 2 x1 | |
[a__U52 (x1, x2) ] | = | 2 x1 + 2 x2 | |
[U52 (x1, x2) ] | = | 2 x1 + x2 | |
[mark# (x1) ] | = | 2 x1 | |
[a__U13 (x1, x2, x3) ] | = | 2 x1 | |
[U51 (x1, x2) ] | = | 3 x1 | |
[U63 (x1, x2, x3) ] | = | 1 | |
[tt] | = | 0 | |
[a__U41 (x1) ] | = | x1 | |
[a__U62 (x1, x2, x3) ] | = | 2 | |
[a__U61 (x1, x2, x3) ] | = | 2 | |
[U16 (x1) ] | = | x1 | |
[isNat (x1) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | x1 | |
[a__U22 (x1, x2) ] | = | x1 | |
[a__isNatKind (x1) ] | = | 0 | |
[U41 (x1) ] | = | x1 | |
[a__U32 (x1) ] | = | 2 x1 | |
[U62 (x1, x2, x3) ] | = | 2 | |
[plus (x1, x2) ] | = | 3 x1 + 2 x2 + 2 | |
[U23 (x1) ] | = | 2 x1 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | 2 | |
[U64 (x1, x2, x3) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U22( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U23( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
mark#( U52( X1 , X2 ) ) | → | a__U52#( mark( X1 ) , X2 ) |
a__U52#( tt , N ) | → | mark#( N ) |
mark#( U52( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | x1 | |
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | x1 + 2 | |
[a__U64 (x1, x2, x3) ] | = | 0 | |
[U61 (x1, x2, x3) ] | = | 0 | |
[a__U16 (x1) ] | = | 2 x1 | |
[a__plus (x1, x2) ] | = | x1 + 2 | |
[0] | = | 0 | |
[U15 (x1, x2) ] | = | 2 x1 | |
[U21 (x1, x2) ] | = | 2 x1 | |
[a__U31 (x1, x2) ] | = | x1 | |
[U31 (x1, x2) ] | = | x1 | |
[U22 (x1, x2) ] | = | x1 | |
[a__U23 (x1) ] | = | x1 | |
[a__U12 (x1, x2, x3) ] | = | 2 x1 | |
[a__U15 (x1, x2) ] | = | 2 x1 | |
[U32 (x1) ] | = | x1 | |
[a__U14 (x1, x2, x3) ] | = | x1 | |
[s (x1) ] | = | 0 | |
[U12 (x1, x2, x3) ] | = | 2 x1 | |
[U14 (x1, x2, x3) ] | = | x1 | |
[a__U52# (x1, x2) ] | = | x1 | |
[mark (x1) ] | = | x1 | |
[U13 (x1, x2, x3) ] | = | x1 | |
[a__U21 (x1, x2) ] | = | 2 x1 | |
[a__U52 (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[U52 (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[mark# (x1) ] | = | x1 | |
[a__U13 (x1, x2, x3) ] | = | x1 | |
[U51 (x1, x2) ] | = | x1 + 2 | |
[U63 (x1, x2, x3) ] | = | 0 | |
[tt] | = | 0 | |
[a__U41 (x1) ] | = | x1 | |
[a__U62 (x1, x2, x3) ] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | 0 | |
[U16 (x1) ] | = | 2 x1 | |
[isNat (x1) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | x1 | |
[a__U22 (x1, x2) ] | = | x1 | |
[a__isNatKind (x1) ] | = | 0 | |
[U41 (x1) ] | = | x1 | |
[a__U32 (x1) ] | = | x1 | |
[U62 (x1, x2, x3) ] | = | 0 | |
[plus (x1, x2) ] | = | x1 + 2 | |
[U23 (x1) ] | = | x1 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | 0 | |
[U64 (x1, x2, x3) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U22( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U23( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
a__U52#( tt , N ) | → | mark#( N ) |
The dependency pairs are split into 1 component(s).
mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U22( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U23( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | 2 x1 + x2 + 3 x3 + 1 | |
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | x1 | |
[a__U64 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[U61 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[a__U16 (x1) ] | = | 2 x1 | |
[a__plus (x1, x2) ] | = | x1 + 3 x2 + 1 | |
[0] | = | 0 | |
[U15 (x1, x2) ] | = | x1 + 2 x2 | |
[U21 (x1, x2) ] | = | x1 + x2 + 2 | |
[a__U31 (x1, x2) ] | = | x1 | |
[U31 (x1, x2) ] | = | x1 | |
[U22 (x1, x2) ] | = | x1 + x2 + 2 | |
[a__U23 (x1) ] | = | x1 + 2 | |
[a__U12 (x1, x2, x3) ] | = | x1 + x2 + 3 x3 | |
[a__U15 (x1, x2) ] | = | x1 + 2 x2 | |
[U32 (x1) ] | = | x1 | |
[a__U14 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 | |
[s (x1) ] | = | x1 + 2 | |
[U12 (x1, x2, x3) ] | = | x1 + x2 + 3 x3 | |
[U14 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 | |
[mark (x1) ] | = | x1 | |
[U13 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 | |
[a__U52 (x1, x2) ] | = | x1 | |
[a__U21 (x1, x2) ] | = | x1 + x2 + 2 | |
[U52 (x1, x2) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[a__U13 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 | |
[U51 (x1, x2) ] | = | x1 | |
[U63 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[tt] | = | 0 | |
[a__U41 (x1) ] | = | 2 x1 | |
[a__U62 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[a__U61 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[U16 (x1) ] | = | 2 x1 | |
[isNat (x1) ] | = | x1 | |
[a__U22 (x1, x2) ] | = | x1 + x2 + 2 | |
[a__U11 (x1, x2, x3) ] | = | 2 x1 + x2 + 3 x3 + 1 | |
[a__isNatKind (x1) ] | = | 0 | |
[U41 (x1) ] | = | 2 x1 | |
[a__U32 (x1) ] | = | x1 | |
[U62 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[plus (x1, x2) ] | = | x1 + 3 x2 + 1 | |
[U23 (x1) ] | = | x1 + 2 | |
[a__isNat (x1) ] | = | x1 | |
[a__U63 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[U64 (x1, x2, x3) ] | = | 3 x1 + x2 + 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( U12( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U13( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U14( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( U15( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U16( X ) ) | → | mark#( X ) |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | x1 + x2 + 1 | |
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | 2 x1 + 2 | |
[a__U64 (x1, x2, x3) ] | = | 0 | |
[U61 (x1, x2, x3) ] | = | 2 | |
[a__U16 (x1) ] | = | x1 + 1 | |
[a__plus (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[0] | = | 0 | |
[U15 (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[a__U31 (x1, x2) ] | = | x1 | |
[U21 (x1, x2) ] | = | 0 | |
[U31 (x1, x2) ] | = | x1 | |
[U22 (x1, x2) ] | = | 0 | |
[a__U23 (x1) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | x1 + 2 x2 + x3 + 1 | |
[a__U15 (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[U32 (x1) ] | = | x1 | |
[a__U14 (x1, x2, x3) ] | = | x1 + 2 x2 + x3 + 1 | |
[s (x1) ] | = | 0 | |
[U12 (x1, x2, x3) ] | = | x1 + 2 x2 + x3 + 1 | |
[U14 (x1, x2, x3) ] | = | x1 + 2 x2 + x3 + 1 | |
[mark (x1) ] | = | 2 x1 | |
[U13 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + x3 + 1 | |
[a__U52 (x1, x2) ] | = | 2 x1 | |
[a__U21 (x1, x2) ] | = | 0 | |
[U52 (x1, x2) ] | = | 2 x1 | |
[mark# (x1) ] | = | 2 x1 | |
[a__U13 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + x3 + 1 | |
[U51 (x1, x2) ] | = | 2 x1 + 1 | |
[U63 (x1, x2, x3) ] | = | 0 | |
[a__U41 (x1) ] | = | 2 x1 | |
[tt] | = | 0 | |
[a__U62 (x1, x2, x3) ] | = | 2 | |
[a__U61 (x1, x2, x3) ] | = | 2 | |
[U16 (x1) ] | = | x1 + 1 | |
[isNat (x1) ] | = | x1 | |
[a__U22 (x1, x2) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | 2 x1 + x2 + 1 | |
[a__U32 (x1) ] | = | x1 | |
[U41 (x1) ] | = | 2 x1 | |
[a__isNatKind (x1) ] | = | 0 | |
[U62 (x1, x2, x3) ] | = | 1 | |
[plus (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
[U23 (x1) ] | = | 0 | |
[a__isNat (x1) ] | = | x1 | |
[a__U63 (x1, x2, x3) ] | = | 0 | |
[U64 (x1, x2, x3) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
mark#( U41( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | 0 | |
[isNatKind (x1) ] | = | 2 x1 | |
[a__U51 (x1, x2) ] | = | x1 | |
[a__U64 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[U61 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[a__U16 (x1) ] | = | 0 | |
[a__plus (x1, x2) ] | = | x1 + 2 x2 | |
[0] | = | 0 | |
[U15 (x1, x2) ] | = | 0 | |
[a__U31 (x1, x2) ] | = | x1 + 3 x2 | |
[U21 (x1, x2) ] | = | 0 | |
[U31 (x1, x2) ] | = | x1 + 3 x2 | |
[U22 (x1, x2) ] | = | 0 | |
[a__U23 (x1) ] | = | 0 | |
[a__U15 (x1, x2) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | 0 | |
[a__U14 (x1, x2, x3) ] | = | 0 | |
[U32 (x1) ] | = | x1 | |
[U12 (x1, x2, x3) ] | = | 0 | |
[s (x1) ] | = | x1 + 2 | |
[U14 (x1, x2, x3) ] | = | 0 | |
[mark (x1) ] | = | x1 | |
[U13 (x1, x2, x3) ] | = | 0 | |
[a__U21 (x1, x2) ] | = | 0 | |
[a__U52 (x1, x2) ] | = | x1 | |
[U52 (x1, x2) ] | = | x1 | |
[mark# (x1) ] | = | 3 x1 | |
[a__U13 (x1, x2, x3) ] | = | 0 | |
[U51 (x1, x2) ] | = | x1 | |
[U63 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[a__U62 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[a__U41 (x1) ] | = | x1 + 2 | |
[tt] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[isNat (x1) ] | = | 0 | |
[U16 (x1) ] | = | 0 | |
[a__U22 (x1, x2) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | 0 | |
[a__U32 (x1) ] | = | x1 | |
[U41 (x1) ] | = | x1 + 2 | |
[a__isNatKind (x1) ] | = | 2 x1 | |
[U62 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[plus (x1, x2) ] | = | x1 + 2 x2 | |
[U23 (x1) ] | = | 0 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[U64 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( U32( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | 0 | |
[isNatKind (x1) ] | = | x1 | |
[a__U64 (x1, x2, x3) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | x1 + 3 | |
[U61 (x1, x2, x3) ] | = | 3 x1 + 2 | |
[a__U16 (x1) ] | = | 0 | |
[a__plus (x1, x2) ] | = | 3 x1 + 3 x2 + 2 | |
[0] | = | 3 | |
[U15 (x1, x2) ] | = | 0 | |
[a__U31 (x1, x2) ] | = | x1 + 3 x2 + 1 | |
[U21 (x1, x2) ] | = | 0 | |
[U31 (x1, x2) ] | = | x1 + 3 x2 + 1 | |
[U22 (x1, x2) ] | = | 0 | |
[a__U23 (x1) ] | = | x1 | |
[a__U15 (x1, x2) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | 0 | |
[a__U14 (x1, x2, x3) ] | = | 0 | |
[U32 (x1) ] | = | 2 x1 | |
[U12 (x1, x2, x3) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[U14 (x1, x2, x3) ] | = | 0 | |
[mark (x1) ] | = | x1 | |
[U13 (x1, x2, x3) ] | = | 0 | |
[a__U21 (x1, x2) ] | = | 0 | |
[a__U52 (x1, x2) ] | = | x1 | |
[U52 (x1, x2) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[a__U13 (x1, x2, x3) ] | = | 0 | |
[U51 (x1, x2) ] | = | x1 + 3 | |
[U63 (x1, x2, x3) ] | = | 0 | |
[a__U62 (x1, x2, x3) ] | = | 0 | |
[a__U41 (x1) ] | = | 0 | |
[tt] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | 3 x1 + 2 | |
[isNat (x1) ] | = | 0 | |
[U16 (x1) ] | = | 0 | |
[a__U22 (x1, x2) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | 0 | |
[a__U32 (x1) ] | = | 2 x1 | |
[a__isNatKind (x1) ] | = | x1 | |
[U41 (x1) ] | = | 0 | |
[U62 (x1, x2, x3) ] | = | 0 | |
[plus (x1, x2) ] | = | 3 x1 + 3 x2 + 2 | |
[U23 (x1) ] | = | x1 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | 0 | |
[U64 (x1, x2, x3) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( U32( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[isNatKind (x1) ] | = | x1 | |
[a__U64 (x1, x2, x3) ] | = | 2 x1 + 2 | |
[a__U51 (x1, x2) ] | = | 2 x1 + 2 | |
[U61 (x1, x2, x3) ] | = | x1 + 2 | |
[a__U16 (x1) ] | = | 0 | |
[a__plus (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[0] | = | 0 | |
[U15 (x1, x2) ] | = | 0 | |
[a__U31 (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
[U21 (x1, x2) ] | = | 1 | |
[U31 (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
[U22 (x1, x2) ] | = | 1 | |
[a__U23 (x1) ] | = | 1 | |
[a__U15 (x1, x2) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | 2 | |
[a__U14 (x1, x2, x3) ] | = | 2 | |
[U32 (x1) ] | = | x1 + 1 | |
[U12 (x1, x2, x3) ] | = | 2 | |
[s (x1) ] | = | 2 | |
[U14 (x1, x2, x3) ] | = | 1 | |
[mark (x1) ] | = | 2 x1 | |
[U13 (x1, x2, x3) ] | = | 1 | |
[a__U21 (x1, x2) ] | = | 2 | |
[a__U52 (x1, x2) ] | = | 2 x1 | |
[U52 (x1, x2) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[a__U13 (x1, x2, x3) ] | = | 2 | |
[U51 (x1, x2) ] | = | x1 + 1 | |
[U63 (x1, x2, x3) ] | = | 2 x1 + 2 | |
[a__U62 (x1, x2, x3) ] | = | 2 x1 + 3 | |
[a__U41 (x1) ] | = | 0 | |
[tt] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | 2 x1 + 3 | |
[isNat (x1) ] | = | 2 x1 + 2 | |
[U16 (x1) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | x1 + 3 x2 + 2 | |
[a__U22 (x1, x2) ] | = | 2 | |
[a__U32 (x1) ] | = | x1 + 1 | |
[a__isNatKind (x1) ] | = | 2 x1 | |
[U41 (x1) ] | = | 0 | |
[U62 (x1, x2, x3) ] | = | 2 x1 + 2 | |
[plus (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
[U23 (x1) ] | = | 1 | |
[a__isNat (x1) ] | = | 3 x1 + 2 | |
[a__U63 (x1, x2, x3) ] | = | 2 x1 + 3 | |
[U64 (x1, x2, x3) ] | = | x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
a__U12#( tt , V1 , V2 ) | → | a__U13#( a__isNatKind( V2 ) , V1 , V2 ) |
a__U13#( tt , V1 , V2 ) | → | a__U14#( a__isNatKind( V2 ) , V1 , V2 ) |
a__U14#( tt , V1 , V2 ) | → | a__U15#( a__isNat( V1 ) , V2 ) |
a__U15#( tt , V2 ) | → | a__isNat#( V2 ) |
a__isNat#( plus( V1 , V2 ) ) | → | a__U11#( a__isNatKind( V1 ) , V1 , V2 ) |
a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNatKind( V1 ) , V1 , V2 ) |
a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
a__U21#( tt , V1 ) | → | a__U22#( a__isNatKind( V1 ) , V1 ) |
a__U22#( tt , V1 ) | → | a__isNat#( V1 ) |
a__U14#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
Linear polynomial interpretation over the naturals
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | x1 | |
[a__U16 (x1) ] | = | 0 | |
[a__plus (x1, x2) ] | = | x1 + x2 | |
[0] | = | 0 | |
[a__U11# (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[a__U22# (x1, x2) ] | = | 2 x1 + 2 | |
[U21 (x1, x2) ] | = | 0 | |
[U31 (x1, x2) ] | = | 0 | |
[a__U23 (x1) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | 0 | |
[a__U14 (x1, x2, x3) ] | = | 0 | |
[U12 (x1, x2, x3) ] | = | 0 | |
[a__U21 (x1, x2) ] | = | 0 | |
[a__U13 (x1, x2, x3) ] | = | 0 | |
[U63 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[a__isNat# (x1) ] | = | 2 x1 | |
[tt] | = | 0 | |
[a__U41 (x1) ] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[a__U22 (x1, x2) ] | = | 0 | |
[a__U21# (x1, x2) ] | = | 2 x1 + 3 | |
[a__U14# (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[a__isNatKind (x1) ] | = | 0 | |
[a__U32 (x1) ] | = | 0 | |
[U41 (x1) ] | = | 0 | |
[a__U15# (x1, x2) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | x1 + x2 | |
[a__U12# (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[U23 (x1) ] | = | 0 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[U64 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[U11 (x1, x2, x3) ] | = | 0 | |
[a__U64 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[U61 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[U15 (x1, x2) ] | = | 0 | |
[a__U31 (x1, x2) ] | = | 0 | |
[a__U13# (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[U22 (x1, x2) ] | = | 0 | |
[a__U15 (x1, x2) ] | = | 0 | |
[U32 (x1) ] | = | 0 | |
[s (x1) ] | = | x1 + 2 | |
[U14 (x1, x2, x3) ] | = | 0 | |
[mark (x1) ] | = | x1 | |
[U13 (x1, x2, x3) ] | = | 0 | |
[a__U52 (x1, x2) ] | = | x1 + x2 | |
[U52 (x1, x2) ] | = | x1 + x2 | |
[U51 (x1, x2) ] | = | x1 | |
[a__U62 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[U16 (x1) ] | = | 0 | |
[isNat (x1) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | 0 | |
[U62 (x1, x2, x3) ] | = | x1 + x2 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__U12#( tt , V1 , V2 ) | → | a__U13#( a__isNatKind( V2 ) , V1 , V2 ) |
a__U13#( tt , V1 , V2 ) | → | a__U14#( a__isNatKind( V2 ) , V1 , V2 ) |
a__U14#( tt , V1 , V2 ) | → | a__U15#( a__isNat( V1 ) , V2 ) |
a__U15#( tt , V2 ) | → | a__isNat#( V2 ) |
a__isNat#( plus( V1 , V2 ) ) | → | a__U11#( a__isNatKind( V1 ) , V1 , V2 ) |
a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNatKind( V1 ) , V1 , V2 ) |
a__U14#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
Linear polynomial interpretation over the naturals
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | 2 x1 + 3 | |
[a__U16 (x1) ] | = | 0 | |
[a__plus (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[0] | = | 2 | |
[a__U11# (x1, x2, x3) ] | = | 2 x1 + x2 + 1 | |
[U21 (x1, x2) ] | = | 0 | |
[U31 (x1, x2) ] | = | 0 | |
[a__U23 (x1) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | 3 x1 | |
[a__U14 (x1, x2, x3) ] | = | 0 | |
[U12 (x1, x2, x3) ] | = | 3 x1 | |
[a__U21 (x1, x2) ] | = | 0 | |
[a__U13 (x1, x2, x3) ] | = | 0 | |
[U63 (x1, x2, x3) ] | = | 0 | |
[a__isNat# (x1) ] | = | x1 | |
[tt] | = | 0 | |
[a__U41 (x1) ] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | 2 x1 | |
[a__U22 (x1, x2) ] | = | 0 | |
[a__U14# (x1, x2, x3) ] | = | x1 + x2 | |
[U41 (x1) ] | = | 0 | |
[a__isNatKind (x1) ] | = | 0 | |
[a__U32 (x1) ] | = | 0 | |
[a__U15# (x1, x2) ] | = | x1 | |
[plus (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[a__U12# (x1, x2, x3) ] | = | 2 x1 + x2 + 1 | |
[U23 (x1) ] | = | 0 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | 0 | |
[U64 (x1, x2, x3) ] | = | 0 | |
[U11 (x1, x2, x3) ] | = | 0 | |
[a__U64 (x1, x2, x3) ] | = | 0 | |
[U61 (x1, x2, x3) ] | = | x1 | |
[U15 (x1, x2) ] | = | 0 | |
[a__U31 (x1, x2) ] | = | 0 | |
[a__U13# (x1, x2, x3) ] | = | x1 + x2 | |
[U22 (x1, x2) ] | = | 0 | |
[a__U15 (x1, x2) ] | = | 0 | |
[U32 (x1) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[U14 (x1, x2, x3) ] | = | 0 | |
[mark (x1) ] | = | 2 x1 | |
[U13 (x1, x2, x3) ] | = | 0 | |
[a__U52 (x1, x2) ] | = | 2 x1 + 3 | |
[U52 (x1, x2) ] | = | 2 x1 + 2 | |
[U51 (x1, x2) ] | = | 2 x1 + 3 | |
[a__U62 (x1, x2, x3) ] | = | 0 | |
[U16 (x1) ] | = | 0 | |
[isNat (x1) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | 0 | |
[U62 (x1, x2, x3) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__U13#( tt , V1 , V2 ) | → | a__U14#( a__isNatKind( V2 ) , V1 , V2 ) |
a__U14#( tt , V1 , V2 ) | → | a__U15#( a__isNat( V1 ) , V2 ) |
a__U15#( tt , V2 ) | → | a__isNat#( V2 ) |
a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNatKind( V1 ) , V1 , V2 ) |
a__U14#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
The dependency pairs are split into 0 component(s).
a__U31#( tt , V2 ) | → | a__isNatKind#( V2 ) |
a__isNatKind#( plus( V1 , V2 ) ) | → | a__U31#( a__isNatKind( V1 ) , V2 ) |
a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | 0 | |
[isNatKind (x1) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | x1 | |
[a__U64 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[U61 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[a__U16 (x1) ] | = | 0 | |
[a__plus (x1, x2) ] | = | 2 x1 + x2 | |
[0] | = | 0 | |
[U15 (x1, x2) ] | = | 0 | |
[a__U31 (x1, x2) ] | = | 0 | |
[U21 (x1, x2) ] | = | 0 | |
[U31 (x1, x2) ] | = | 0 | |
[U22 (x1, x2) ] | = | 0 | |
[a__U31# (x1, x2) ] | = | 2 x1 | |
[a__U23 (x1) ] | = | 0 | |
[a__U15 (x1, x2) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | 0 | |
[U32 (x1) ] | = | 0 | |
[a__U14 (x1, x2, x3) ] | = | 0 | |
[U12 (x1, x2, x3) ] | = | 0 | |
[s (x1) ] | = | x1 + 1 | |
[U14 (x1, x2, x3) ] | = | 0 | |
[mark (x1) ] | = | x1 | |
[U13 (x1, x2, x3) ] | = | 0 | |
[a__U52 (x1, x2) ] | = | x1 | |
[a__U21 (x1, x2) ] | = | 0 | |
[U52 (x1, x2) ] | = | x1 | |
[a__U13 (x1, x2, x3) ] | = | 0 | |
[U51 (x1, x2) ] | = | x1 | |
[U63 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[a__U62 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[a__U41 (x1) ] | = | 2 x1 | |
[tt] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[isNat (x1) ] | = | 0 | |
[U16 (x1) ] | = | 0 | |
[a__U22 (x1, x2) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | 0 | |
[a__U32 (x1) ] | = | 0 | |
[a__isNatKind (x1) ] | = | 0 | |
[U41 (x1) ] | = | 2 x1 | |
[U62 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[plus (x1, x2) ] | = | 2 x1 + x2 | |
[U23 (x1) ] | = | 0 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[a__isNatKind# (x1) ] | = | 2 x1 | |
[U64 (x1, x2, x3) ] | = | x1 + 2 x2 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__U31#( tt , V2 ) | → | a__isNatKind#( V2 ) |
a__isNatKind#( plus( V1 , V2 ) ) | → | a__U31#( a__isNatKind( V1 ) , V2 ) |
a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | 0 | |
[isNatKind (x1) ] | = | 0 | |
[a__U64 (x1, x2, x3) ] | = | 0 | |
[a__U51 (x1, x2) ] | = | 2 x1 + 2 | |
[U61 (x1, x2, x3) ] | = | x1 + 1 | |
[a__U16 (x1) ] | = | 0 | |
[a__plus (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[0] | = | 2 | |
[U15 (x1, x2) ] | = | 0 | |
[a__U31 (x1, x2) ] | = | 0 | |
[U21 (x1, x2) ] | = | 0 | |
[U31 (x1, x2) ] | = | 0 | |
[U22 (x1, x2) ] | = | 0 | |
[a__U31# (x1, x2) ] | = | x1 + 1 | |
[a__U23 (x1) ] | = | 0 | |
[a__U15 (x1, x2) ] | = | 0 | |
[a__U12 (x1, x2, x3) ] | = | 0 | |
[U32 (x1) ] | = | 0 | |
[a__U14 (x1, x2, x3) ] | = | 0 | |
[U12 (x1, x2, x3) ] | = | 0 | |
[s (x1) ] | = | 0 | |
[U14 (x1, x2, x3) ] | = | 0 | |
[mark (x1) ] | = | 2 x1 | |
[U13 (x1, x2, x3) ] | = | 0 | |
[a__U52 (x1, x2) ] | = | 2 x1 + 2 | |
[a__U21 (x1, x2) ] | = | 0 | |
[U52 (x1, x2) ] | = | x1 + 1 | |
[a__U13 (x1, x2, x3) ] | = | 0 | |
[U51 (x1, x2) ] | = | 2 x1 + 1 | |
[U63 (x1, x2, x3) ] | = | 0 | |
[a__U62 (x1, x2, x3) ] | = | 0 | |
[a__U41 (x1) ] | = | 0 | |
[tt] | = | 0 | |
[a__U61 (x1, x2, x3) ] | = | x1 + 1 | |
[isNat (x1) ] | = | 0 | |
[U16 (x1) ] | = | 0 | |
[a__U22 (x1, x2) ] | = | 0 | |
[a__U11 (x1, x2, x3) ] | = | 0 | |
[a__U32 (x1) ] | = | 0 | |
[a__isNatKind (x1) ] | = | 0 | |
[U41 (x1) ] | = | 0 | |
[U62 (x1, x2, x3) ] | = | 0 | |
[plus (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[U23 (x1) ] | = | 0 | |
[a__isNat (x1) ] | = | 0 | |
[a__U63 (x1, x2, x3) ] | = | 0 | |
[a__isNatKind# (x1) ] | = | x1 | |
[U64 (x1, x2, x3) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__isNatKind#( plus( V1 , V2 ) ) | → | a__U31#( a__isNatKind( V1 ) , V2 ) |
The dependency pairs are split into 0 component(s).