Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | U11 : symb | U12 : symb | U21 : symb | U31 : symb | U41 : symb | U42 : symb | _0_1 : symb | activate : symb | isNat : symb | n__0 : symb | n__plus : symb | n__s : symb | plus : symb | s : symb | tt : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.U11 => 2 | M.U12 => 1 | M.U21 => 1 | M.U31 => 2 | M.U41 => 3 | M.U42 => 3 | M._0_1 => 0 | M.activate => 1 | M.isNat => 1 | M.n__0 => 0 | M.n__plus => 2 | M.n__s => 1 | M.plus => 2 | M.s => 1 | M.tt => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition U11 x2 x1 := F0 M.U11 (Vcons x2 (Vcons x1 Vnil)). Definition U12 x1 := F0 M.U12 (Vcons x1 Vnil). Definition U21 x1 := F0 M.U21 (Vcons x1 Vnil). Definition U31 x2 x1 := F0 M.U31 (Vcons x2 (Vcons x1 Vnil)). Definition U41 x3 x2 x1 := F0 M.U41 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition U42 x3 x2 x1 := F0 M.U42 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition _0_1 := F0 M._0_1 Vnil. Definition activate x1 := F0 M.activate (Vcons x1 Vnil). Definition isNat x1 := F0 M.isNat (Vcons x1 Vnil). Definition n__0 := F0 M.n__0 Vnil. Definition n__plus x2 x1 := F0 M.n__plus (Vcons x2 (Vcons x1 Vnil)). Definition n__s x1 := F0 M.n__s (Vcons x1 Vnil). Definition plus x2 x1 := F0 M.plus (Vcons x2 (Vcons x1 Vnil)). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition tt := F0 M.tt Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.U11 S0.tt (V0 0)) (S0.U12 (S0.isNat (S0.activate (V0 0)))) :: R0 (S0.U12 S0.tt) S0.tt :: R0 (S0.U21 S0.tt) S0.tt :: R0 (S0.U31 S0.tt (V0 0)) (S0.activate (V0 0)) :: R0 (S0.U41 S0.tt (V0 0) (V0 1)) (S0.U42 (S0.isNat (S0.activate (V0 1))) (S0.activate (V0 0)) (S0.activate (V0 1))) :: R0 (S0.U42 S0.tt (V0 0) (V0 1)) (S0.s (S0.plus (S0.activate (V0 1)) (S0.activate (V0 0)))) :: R0 (S0.isNat S0.n__0) S0.tt :: R0 (S0.isNat (S0.n__plus (V0 0) (V0 1))) (S0.U11 (S0.isNat (S0.activate (V0 0))) (S0.activate (V0 1))) :: R0 (S0.isNat (S0.n__s (V0 0))) (S0.U21 (S0.isNat (S0.activate (V0 0)))) :: R0 (S0.plus (V0 0) S0._0_1) (S0.U31 (S0.isNat (V0 0)) (V0 0)) :: R0 (S0.plus (V0 0) (S0.s (V0 1))) (S0.U41 (S0.isNat (V0 1)) (V0 1) (V0 0)) :: R0 S0._0_1 S0.n__0 :: R0 (S0.plus (V0 0) (V0 1)) (S0.n__plus (V0 0) (V0 1)) :: R0 (S0.s (V0 0)) (S0.n__s (V0 0)) :: R0 (S0.activate S0.n__0) S0._0_1 :: R0 (S0.activate (S0.n__plus (V0 0) (V0 1))) (S0.plus (S0.activate (V0 0)) (S0.activate (V0 1))) :: R0 (S0.activate (S0.n__s (V0 0))) (S0.s (S0.activate (V0 0))) :: R0 (S0.activate (V0 0)) (V0 0) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hU11 x2 x1 := F1 (hd_symb s1_p M.U11) (Vcons x2 (Vcons x1 Vnil)). Definition U11 x2 x1 := F1 (int_symb s1_p M.U11) (Vcons x2 (Vcons x1 Vnil)). Definition hU12 x1 := F1 (hd_symb s1_p M.U12) (Vcons x1 Vnil). Definition U12 x1 := F1 (int_symb s1_p M.U12) (Vcons x1 Vnil). Definition hU21 x1 := F1 (hd_symb s1_p M.U21) (Vcons x1 Vnil). Definition U21 x1 := F1 (int_symb s1_p M.U21) (Vcons x1 Vnil). Definition hU31 x2 x1 := F1 (hd_symb s1_p M.U31) (Vcons x2 (Vcons x1 Vnil)). Definition U31 x2 x1 := F1 (int_symb s1_p M.U31) (Vcons x2 (Vcons x1 Vnil)). Definition hU41 x3 x2 x1 := F1 (hd_symb s1_p M.U41) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition U41 x3 x2 x1 := F1 (int_symb s1_p M.U41) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hU42 x3 x2 x1 := F1 (hd_symb s1_p M.U42) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition U42 x3 x2 x1 := F1 (int_symb s1_p M.U42) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hactivate x1 := F1 (hd_symb s1_p M.activate) (Vcons x1 Vnil). Definition activate x1 := F1 (int_symb s1_p M.activate) (Vcons x1 Vnil). Definition hisNat x1 := F1 (hd_symb s1_p M.isNat) (Vcons x1 Vnil). Definition isNat x1 := F1 (int_symb s1_p M.isNat) (Vcons x1 Vnil). Definition hn__0 := F1 (hd_symb s1_p M.n__0) Vnil. Definition n__0 := F1 (int_symb s1_p M.n__0) Vnil. Definition hn__plus x2 x1 := F1 (hd_symb s1_p M.n__plus) (Vcons x2 (Vcons x1 Vnil)). Definition n__plus x2 x1 := F1 (int_symb s1_p M.n__plus) (Vcons x2 (Vcons x1 Vnil)). Definition hn__s x1 := F1 (hd_symb s1_p M.n__s) (Vcons x1 Vnil). Definition n__s x1 := F1 (int_symb s1_p M.n__s) (Vcons x1 Vnil). Definition hplus x2 x1 := F1 (hd_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition plus x2 x1 := F1 (int_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition htt := F1 (hd_symb s1_p M.tt) Vnil. Definition tt := F1 (int_symb s1_p M.tt) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hactivate (S1.n__s (V1 0))) (S1.hs (S1.activate (V1 0))) :: nil) :: ( R1 (S1.hactivate (S1.n__0)) (S1.h_0_1) :: nil) :: ( R1 (S1.hisNat (S1.n__s (V1 0))) (S1.hU21 (S1.isNat (S1.activate (V1 0)))) :: nil) :: ( R1 (S1.hU42 (S1.tt) (V1 0) (V1 1)) (S1.hs (S1.plus (S1.activate (V1 1)) (S1.activate (V1 0)))) :: nil) :: ( R1 (S1.hU11 (S1.tt) (V1 0)) (S1.hU12 (S1.isNat (S1.activate (V1 0)))) :: nil) :: ( R1 (S1.hU11 (S1.tt) (V1 0)) (S1.hisNat (S1.activate (V1 0))) :: R1 (S1.hisNat (S1.n__plus (V1 0) (V1 1))) (S1.hU11 (S1.isNat (S1.activate (V1 0))) (S1.activate (V1 1))) :: R1 (S1.hU11 (S1.tt) (V1 0)) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__plus (V1 0) (V1 1))) (S1.hplus (S1.activate (V1 0)) (S1.activate (V1 1))) :: R1 (S1.hplus (V1 0) (S1._0_1)) (S1.hU31 (S1.isNat (V1 0)) (V1 0)) :: R1 (S1.hU31 (S1.tt) (V1 0)) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__plus (V1 0) (V1 1))) (S1.hactivate (V1 0)) :: R1 (S1.hactivate (S1.n__plus (V1 0) (V1 1))) (S1.hactivate (V1 1)) :: R1 (S1.hactivate (S1.n__s (V1 0))) (S1.hactivate (V1 0)) :: R1 (S1.hplus (V1 0) (S1._0_1)) (S1.hisNat (V1 0)) :: R1 (S1.hisNat (S1.n__plus (V1 0) (V1 1))) (S1.hisNat (S1.activate (V1 0))) :: R1 (S1.hisNat (S1.n__plus (V1 0) (V1 1))) (S1.hactivate (V1 0)) :: R1 (S1.hisNat (S1.n__plus (V1 0) (V1 1))) (S1.hactivate (V1 1)) :: R1 (S1.hisNat (S1.n__s (V1 0))) (S1.hisNat (S1.activate (V1 0))) :: R1 (S1.hisNat (S1.n__s (V1 0))) (S1.hactivate (V1 0)) :: R1 (S1.hplus (V1 0) (S1.s (V1 1))) (S1.hU41 (S1.isNat (V1 1)) (V1 1) (V1 0)) :: R1 (S1.hU41 (S1.tt) (V1 0) (V1 1)) (S1.hU42 (S1.isNat (S1.activate (V1 1))) (S1.activate (V1 0)) (S1.activate (V1 1))) :: R1 (S1.hU42 (S1.tt) (V1 0) (V1 1)) (S1.hplus (S1.activate (V1 1)) (S1.activate (V1 0))) :: R1 (S1.hplus (V1 0) (S1.s (V1 1))) (S1.hisNat (V1 1)) :: R1 (S1.hU42 (S1.tt) (V1 0) (V1 1)) (S1.hactivate (V1 1)) :: R1 (S1.hU42 (S1.tt) (V1 0) (V1 1)) (S1.hactivate (V1 0)) :: R1 (S1.hU41 (S1.tt) (V1 0) (V1 1)) (S1.hisNat (S1.activate (V1 1))) :: R1 (S1.hU41 (S1.tt) (V1 0) (V1 1)) (S1.hactivate (V1 1)) :: R1 (S1.hU41 (S1.tt) (V1 0) (V1 1)) (S1.hactivate (V1 0)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.U11) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.U11) => nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.U12) => nil | (int_symb M.U12) => nil | (hd_symb M.isNat) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.isNat) => nil | (hd_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U21) => nil | (int_symb M.U21) => nil | (hd_symb M.U31) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.U31) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.U41) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M.U41) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.U42) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M.U42) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.plus) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.plus) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__0) => nil | (int_symb M.n__0) => nil | (hd_symb M.n__plus) => nil | (int_symb M.n__plus) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__s) => nil | (int_symb M.n__s) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.U11) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.U11) => nil | (hd_symb M.tt) => nil | (int_symb M.tt) => nil | (hd_symb M.U12) => nil | (int_symb M.U12) => nil | (hd_symb M.isNat) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.isNat) => nil | (hd_symb M.activate) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.activate) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.U21) => nil | (int_symb M.U21) => nil | (hd_symb M.U31) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.U31) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.U41) => nil | (int_symb M.U41) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.U42) => nil | (int_symb M.U42) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.plus) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.plus) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__0) => nil | (int_symb M.n__0) => (2%Z, Vnil) :: nil | (hd_symb M.n__plus) => nil | (int_symb M.n__plus) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.n__s) => nil | (int_symb M.n__s) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (2%Z, Vnil) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hU31 (S1.tt) (V1 0)) (S1.hactivate (V1 0)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. right. PI1.prove_termination. PI2.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.