U11#( tt , M , N ) | → | U12#( tt , activate( M ) , activate( N ) ) |
U11#( tt , M , N ) | → | activate#( M ) |
U11#( tt , M , N ) | → | activate#( N ) |
U12#( tt , M , N ) | → | plus#( activate( N ) , activate( M ) ) |
U12#( tt , M , N ) | → | activate#( N ) |
U12#( tt , M , N ) | → | activate#( M ) |
plus#( N , s( M ) ) | → | U11#( tt , M , N ) |
The dependency pairs are split into 1 component(s).
U12#( tt , M , N ) | → | plus#( activate( N ) , activate( M ) ) |
plus#( N , s( M ) ) | → | U11#( tt , M , N ) |
U11#( tt , M , N ) | → | U12#( tt , activate( M ) , activate( N ) ) |
Linear polynomial interpretation over the naturals
[U11 (x1, x2, x3) ] | = | 2 x1 + x2 + x3 | |
[U11# (x1, x2, x3) ] | = | 3 x1 + 2 x2 + 2 | |
[plus (x1, x2) ] | = | x1 + x2 + 1 | |
[s (x1) ] | = | x1 + 3 | |
[U12 (x1, x2, x3) ] | = | 2 x1 + x2 + x3 | |
[0] | = | 0 | |
[plus# (x1, x2) ] | = | 2 x1 + 3 | |
[U12# (x1, x2, x3) ] | = | 2 x1 + 3 | |
[tt] | = | 2 | |
[activate (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
U12#( tt , M , N ) | → | plus#( activate( N ) , activate( M ) ) |
The dependency pairs are split into 0 component(s).