active#( plus( N , s( M ) ) ) | → | s#( plus( N , M ) ) |
active#( plus( N , s( M ) ) ) | → | plus#( N , M ) |
active#( and( X1 , X2 ) ) | → | and#( active( X1 ) , X2 ) |
active#( and( X1 , X2 ) ) | → | active#( X1 ) |
active#( plus( X1 , X2 ) ) | → | plus#( active( X1 ) , X2 ) |
active#( plus( X1 , X2 ) ) | → | active#( X1 ) |
active#( plus( X1 , X2 ) ) | → | plus#( X1 , active( X2 ) ) |
active#( plus( X1 , X2 ) ) | → | active#( X2 ) |
active#( s( X ) ) | → | s#( active( X ) ) |
active#( s( X ) ) | → | active#( X ) |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
plus#( mark( X1 ) , X2 ) | → | plus#( X1 , X2 ) |
plus#( X1 , mark( X2 ) ) | → | plus#( X1 , X2 ) |
s#( mark( X ) ) | → | s#( X ) |
proper#( and( X1 , X2 ) ) | → | and#( proper( X1 ) , proper( X2 ) ) |
proper#( and( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( and( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( plus( X1 , X2 ) ) | → | plus#( proper( X1 ) , proper( X2 ) ) |
proper#( plus( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( plus( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( s( X ) ) | → | s#( proper( X ) ) |
proper#( s( X ) ) | → | proper#( X ) |
and#( ok( X1 ) , ok( X2 ) ) | → | and#( X1 , X2 ) |
plus#( ok( X1 ) , ok( X2 ) ) | → | plus#( X1 , X2 ) |
s#( ok( X ) ) | → | s#( X ) |
top#( mark( X ) ) | → | top#( proper( X ) ) |
top#( mark( X ) ) | → | proper#( X ) |
top#( ok( X ) ) | → | top#( active( X ) ) |
top#( ok( X ) ) | → | active#( X ) |
The dependency pairs are split into 6 component(s).
top#( ok( X ) ) | → | top#( active( X ) ) |
top#( mark( X ) ) | → | top#( proper( X ) ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 2 | |
[and (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[active (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | x1 + 3 x2 | |
[0] | = | 3 | |
[s (x1) ] | = | x1 + 1 | |
[top# (x1) ] | = | x1 | |
[ok (x1) ] | = | x1 | |
[tt] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
top#( ok( X ) ) | → | top#( active( X ) ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | 3 x1 + 2 | |
[mark (x1) ] | = | 0 | |
[active (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | x1 | |
[0] | = | 2 | |
[s (x1) ] | = | x1 | |
[top# (x1) ] | = | x1 | |
[ok (x1) ] | = | 2 x1 + 2 | |
[tt] | = | 2 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 3 x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
active#( plus( X1 , X2 ) ) | → | active#( X1 ) |
active#( and( X1 , X2 ) ) | → | active#( X1 ) |
active#( plus( X1 , X2 ) ) | → | active#( X2 ) |
active#( s( X ) ) | → | active#( X ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[mark (x1) ] | = | 0 | |
[active# (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | x1 + 3 x2 + 3 | |
[active (x1) ] | = | 2 x1 | |
[s (x1) ] | = | 2 x1 | |
[0] | = | 2 | |
[ok (x1) ] | = | 0 | |
[tt] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
active#( s( X ) ) | → | active#( X ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | x1 + 1 | |
[mark (x1) ] | = | 1 | |
[active# (x1) ] | = | 3 x1 | |
[active (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | x1 + 1 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 2 | |
[ok (x1) ] | = | 0 | |
[tt] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
proper#( and( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( and( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( plus( X1 , X2 ) ) | → | proper#( X1 ) |
proper#( plus( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( s( X ) ) | → | proper#( X ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | x1 + 2 x2 | |
[mark (x1) ] | = | 0 | |
[proper# (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
[active (x1) ] | = | 3 x1 | |
[s (x1) ] | = | x1 + 3 | |
[0] | = | 0 | |
[ok (x1) ] | = | x1 | |
[tt] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
proper#( and( X1 , X2 ) ) | → | proper#( X2 ) |
proper#( and( X1 , X2 ) ) | → | proper#( X1 ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[mark (x1) ] | = | x1 | |
[proper# (x1) ] | = | 2 x1 | |
[active (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | x1 + 2 x2 | |
[0] | = | 1 | |
[s (x1) ] | = | x1 | |
[ok (x1) ] | = | 1 | |
[tt] | = | 1 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
and#( ok( X1 ) , ok( X2 ) ) | → | and#( X1 , X2 ) |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 0 | |
[and (x1, x2) ] | = | 3 x1 + 2 | |
[active (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | 3 x1 + 2 x2 | |
[0] | = | 2 | |
[s (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | 2 x1 + 2 | |
[and# (x1, x2) ] | = | x1 | |
[tt] | = | 2 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 2 | |
[and (x1, x2) ] | = | x1 + 2 x2 + 3 | |
[active (x1) ] | = | 3 x1 | |
[plus (x1, x2) ] | = | x1 + 2 x2 | |
[0] | = | 1 | |
[s (x1) ] | = | 3 x1 + 2 | |
[ok (x1) ] | = | 0 | |
[and# (x1, x2) ] | = | x1 | |
[tt] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
plus#( X1 , mark( X2 ) ) | → | plus#( X1 , X2 ) |
plus#( mark( X1 ) , X2 ) | → | plus#( X1 , X2 ) |
plus#( ok( X1 ) , ok( X2 ) ) | → | plus#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[and (x1, x2) ] | = | 2 x1 + x2 | |
[active (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | 2 x1 + 2 x2 | |
[0] | = | 2 | |
[s (x1) ] | = | 2 x1 + 1 | |
[plus# (x1, x2) ] | = | 2 x1 + 3 x2 | |
[ok (x1) ] | = | x1 | |
[tt] | = | 2 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
plus#( ok( X1 ) , ok( X2 ) ) | → | plus#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | x1 | |
[mark (x1) ] | = | 0 | |
[active (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | x1 | |
[0] | = | 1 | |
[s (x1) ] | = | 2 x1 | |
[plus# (x1, x2) ] | = | x1 | |
[ok (x1) ] | = | x1 + 1 | |
[tt] | = | 2 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
s#( ok( X ) ) | → | s#( X ) |
s#( mark( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 | |
[and (x1, x2) ] | = | x1 | |
[active (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | 2 x1 | |
[0] | = | 1 | |
[s (x1) ] | = | 2 x1 | |
[ok (x1) ] | = | 2 x1 + 1 | |
[s# (x1) ] | = | x1 | |
[tt] | = | 2 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
s#( mark( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 2 | |
[and (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[active (x1) ] | = | 3 x1 | |
[plus (x1, x2) ] | = | 2 x1 + x2 | |
[0] | = | 1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[ok (x1) ] | = | 0 | |
[s# (x1) ] | = | x1 | |
[tt] | = | 0 | |
[top (x1) ] | = | 0 | |
[proper (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.