active#(
and(
tt
,
X
)
)
|
→ |
mark#(
X
)
|
active#(
plus(
N
,
0
)
)
|
→ |
mark#(
N
)
|
active#(
plus(
N
,
s(
M
)
)
)
|
→ |
mark#(
s(
plus(
N
,
M
)
)
)
|
active#(
plus(
N
,
s(
M
)
)
)
|
→ |
s#(
plus(
N
,
M
)
)
|
active#(
plus(
N
,
s(
M
)
)
)
|
→ |
plus#(
N
,
M
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
active#(
and(
mark(
X1
)
,
X2
)
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
and#(
mark(
X1
)
,
X2
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
tt
)
|
→ |
active#(
tt
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
active#(
plus(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
plus#(
mark(
X1
)
,
mark(
X2
)
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
0
)
|
→ |
active#(
0
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
mark(
X
)
)
)
|
mark#(
s(
X
)
)
|
→ |
s#(
mark(
X
)
)
|
mark#(
s(
X
)
)
|
→ |
mark#(
X
)
|
and#(
mark(
X1
)
,
X2
)
|
→ |
and#(
X1
,
X2
)
|
and#(
X1
,
mark(
X2
)
)
|
→ |
and#(
X1
,
X2
)
|
and#(
active(
X1
)
,
X2
)
|
→ |
and#(
X1
,
X2
)
|
and#(
X1
,
active(
X2
)
)
|
→ |
and#(
X1
,
X2
)
|
plus#(
mark(
X1
)
,
X2
)
|
→ |
plus#(
X1
,
X2
)
|
plus#(
X1
,
mark(
X2
)
)
|
→ |
plus#(
X1
,
X2
)
|
plus#(
active(
X1
)
,
X2
)
|
→ |
plus#(
X1
,
X2
)
|
plus#(
X1
,
active(
X2
)
)
|
→ |
plus#(
X1
,
X2
)
|
s#(
mark(
X
)
)
|
→ |
s#(
X
)
|
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
The dependency pairs are split into 4 component(s).
-
The
1st
component contains the
pair(s)
mark#(
and(
X1
,
X2
)
)
|
→ |
active#(
and(
mark(
X1
)
,
X2
)
)
|
active#(
and(
tt
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
active#(
plus(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
plus(
N
,
0
)
)
|
→ |
mark#(
N
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
mark#(
s(
X
)
)
|
→ |
active#(
s(
mark(
X
)
)
)
|
active#(
plus(
N
,
s(
M
)
)
)
|
→ |
mark#(
s(
plus(
N
,
M
)
)
)
|
mark#(
s(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[and
(x1, x2)
]
|
= |
1
|
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
x1
|
[plus
(x1, x2)
]
|
= |
1
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
1
|
[0]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[tt]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
and(
X1
,
X2
)
)
|
→ |
active#(
and(
mark(
X1
)
,
X2
)
)
|
active#(
and(
tt
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
active#(
plus(
mark(
X1
)
,
mark(
X2
)
)
)
|
active#(
plus(
N
,
0
)
)
|
→ |
mark#(
N
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
active#(
plus(
N
,
s(
M
)
)
)
|
→ |
mark#(
s(
plus(
N
,
M
)
)
)
|
mark#(
s(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[and
(x1, x2)
]
|
= |
2
x1 + x2
|
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
x1
|
[plus
(x1, x2)
]
|
= |
2
x1 + x2
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
x1
|
[0]
|
= |
2
|
[s
(x1)
]
|
= |
x1
|
[tt]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
and(
X1
,
X2
)
)
|
→ |
active#(
and(
mark(
X1
)
,
X2
)
)
|
active#(
and(
tt
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
active#(
plus(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
active#(
plus(
N
,
s(
M
)
)
)
|
→ |
mark#(
s(
plus(
N
,
M
)
)
)
|
mark#(
s(
X
)
)
|
→ |
mark#(
X
)
|
1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[and
(x1, x2)
]
|
= |
x1 + x2
|
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
x1
|
[plus
(x1, x2)
]
|
= |
x1 +
2
x2
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
x1
|
[s
(x1)
]
|
= |
x1
+
2
|
[0]
|
= |
0
|
[tt]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
and(
X1
,
X2
)
)
|
→ |
active#(
and(
mark(
X1
)
,
X2
)
)
|
active#(
and(
tt
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
active#(
plus(
mark(
X1
)
,
mark(
X2
)
)
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[and
(x1, x2)
]
|
= |
1
|
[mark
(x1)
]
|
= |
0
|
[active#
(x1)
]
|
= |
2
x1
|
[plus
(x1, x2)
]
|
= |
0
|
[active
(x1)
]
|
= |
0
|
[mark#
(x1)
]
|
= |
2
|
[0]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[tt]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
and(
X1
,
X2
)
)
|
→ |
active#(
and(
mark(
X1
)
,
X2
)
)
|
active#(
and(
tt
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
mark#(
plus(
X1
,
X2
)
)
|
→ |
mark#(
X2
)
|
1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[and
(x1, x2)
]
|
= |
2
x1 +
2
x2
|
[mark
(x1)
]
|
= |
x1
|
[active#
(x1)
]
|
= |
2
x1
|
[plus
(x1, x2)
]
|
= |
2
x1 +
2
x2
+
1
|
[active
(x1)
]
|
= |
x1
|
[mark#
(x1)
]
|
= |
2
x1
|
[0]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[tt]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
mark#(
and(
X1
,
X2
)
)
|
→ |
active#(
and(
mark(
X1
)
,
X2
)
)
|
active#(
and(
tt
,
X
)
)
|
→ |
mark#(
X
)
|
mark#(
and(
X1
,
X2
)
)
|
→ |
mark#(
X1
)
|
1.1.1.1.1.1.1.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[and
(x1, x2)
]
|
= |
x1 +
3
x2
+
2
|
[mark
(x1)
]
|
= |
2
x1
|
[active#
(x1)
]
|
= |
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[plus
(x1, x2)
]
|
= |
2
x1
+
3
|
[mark#
(x1)
]
|
= |
2
x1
|
[0]
|
= |
3
|
[s
(x1)
]
|
= |
0
|
[tt]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.1.1.1.1.1.1.1: P is empty
All dependency pairs have been removed.
-
The
2nd
component contains the
pair(s)
and#(
X1
,
mark(
X2
)
)
|
→ |
and#(
X1
,
X2
)
|
and#(
mark(
X1
)
,
X2
)
|
→ |
and#(
X1
,
X2
)
|
and#(
active(
X1
)
,
X2
)
|
→ |
and#(
X1
,
X2
)
|
and#(
X1
,
active(
X2
)
)
|
→ |
and#(
X1
,
X2
)
|
1.1.2: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
3
x1
+
1
|
[and
(x1, x2)
]
|
= |
3
x1
+
1
|
[active
(x1)
]
|
= |
x1
+
3
|
[plus
(x1, x2)
]
|
= |
3
x1
+
3
|
[0]
|
= |
2
|
[s
(x1)
]
|
= |
1
|
[and#
(x1, x2)
]
|
= |
3
x1 + x2
|
[tt]
|
= |
3
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.2.1: P is empty
All dependency pairs have been removed.
-
The
3rd
component contains the
pair(s)
plus#(
X1
,
mark(
X2
)
)
|
→ |
plus#(
X1
,
X2
)
|
plus#(
mark(
X1
)
,
X2
)
|
→ |
plus#(
X1
,
X2
)
|
plus#(
active(
X1
)
,
X2
)
|
→ |
plus#(
X1
,
X2
)
|
plus#(
X1
,
active(
X2
)
)
|
→ |
plus#(
X1
,
X2
)
|
1.1.3: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
3
x1
+
1
|
[and
(x1, x2)
]
|
= |
3
x1
+
1
|
[active
(x1)
]
|
= |
x1
+
3
|
[plus
(x1, x2)
]
|
= |
3
x1
+
3
|
[0]
|
= |
2
|
[s
(x1)
]
|
= |
1
|
[plus#
(x1, x2)
]
|
= |
3
x1 + x2
|
[tt]
|
= |
3
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.3.1: P is empty
All dependency pairs have been removed.
-
The
4th
component contains the
pair(s)
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
s#(
mark(
X
)
)
|
→ |
s#(
X
)
|
1.1.4: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[mark
(x1)
]
|
= |
x1
+
1
|
[and
(x1, x2)
]
|
= |
2
x1
+
1
|
[active
(x1)
]
|
= |
x1
|
[plus
(x1, x2)
]
|
= |
x1
+
1
|
[0]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[s#
(x1)
]
|
= |
x1
|
[tt]
|
= |
3
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
s#(
active(
X
)
)
|
→ |
s#(
X
)
|
1.1.4.1: reduction pair processor
Using the following reduction pair
Linear polynomial
interpretation over
the naturals
[and
(x1, x2)
]
|
= |
0
|
[mark
(x1)
]
|
= |
1
|
[active
(x1)
]
|
= |
2
x1
+
1
|
[plus
(x1, x2)
]
|
= |
0
|
[0]
|
= |
0
|
[s
(x1)
]
|
= |
0
|
[s#
(x1)
]
|
= |
x1
|
[tt]
|
= |
0
|
[f(x1, ..., xn)]
|
= |
x1 + ... + xn + 1
|
for all other symbols f of arity n
|
one remains with the following pair(s).
1.1.4.1.1: P is empty
All dependency pairs have been removed.