active#( and( tt , X ) ) | → | mark#( X ) |
active#( plus( N , 0 ) ) | → | mark#( N ) |
active#( plus( N , s( M ) ) ) | → | mark#( s( plus( N , M ) ) ) |
active#( plus( N , s( M ) ) ) | → | s#( plus( N , M ) ) |
active#( plus( N , s( M ) ) ) | → | plus#( N , M ) |
mark#( and( X1 , X2 ) ) | → | active#( and( mark( X1 ) , X2 ) ) |
mark#( and( X1 , X2 ) ) | → | and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( tt ) | → | active#( tt ) |
mark#( plus( X1 , X2 ) ) | → | active#( plus( mark( X1 ) , mark( X2 ) ) ) |
mark#( plus( X1 , X2 ) ) | → | plus#( mark( X1 ) , mark( X2 ) ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( 0 ) | → | active#( 0 ) |
mark#( s( X ) ) | → | active#( s( mark( X ) ) ) |
mark#( s( X ) ) | → | s#( mark( X ) ) |
mark#( s( X ) ) | → | mark#( X ) |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
and#( X1 , mark( X2 ) ) | → | and#( X1 , X2 ) |
and#( active( X1 ) , X2 ) | → | and#( X1 , X2 ) |
and#( X1 , active( X2 ) ) | → | and#( X1 , X2 ) |
plus#( mark( X1 ) , X2 ) | → | plus#( X1 , X2 ) |
plus#( X1 , mark( X2 ) ) | → | plus#( X1 , X2 ) |
plus#( active( X1 ) , X2 ) | → | plus#( X1 , X2 ) |
plus#( X1 , active( X2 ) ) | → | plus#( X1 , X2 ) |
s#( mark( X ) ) | → | s#( X ) |
s#( active( X ) ) | → | s#( X ) |
The dependency pairs are split into 4 component(s).
mark#( and( X1 , X2 ) ) | → | active#( and( mark( X1 ) , X2 ) ) |
active#( and( tt , X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | active#( plus( mark( X1 ) , mark( X2 ) ) ) |
active#( plus( N , 0 ) ) | → | mark#( N ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( s( X ) ) | → | active#( s( mark( X ) ) ) |
active#( plus( N , s( M ) ) ) | → | mark#( s( plus( N , M ) ) ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | 1 | |
[mark (x1) ] | = | 0 | |
[active# (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | 1 | |
[active (x1) ] | = | 0 | |
[mark# (x1) ] | = | 1 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[tt] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | active#( and( mark( X1 ) , X2 ) ) |
active#( and( tt , X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | active#( plus( mark( X1 ) , mark( X2 ) ) ) |
active#( plus( N , 0 ) ) | → | mark#( N ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
active#( plus( N , s( M ) ) ) | → | mark#( s( plus( N , M ) ) ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | 2 x1 + x2 | |
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | 2 x1 + x2 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | x1 | |
[0] | = | 2 | |
[s (x1) ] | = | x1 | |
[tt] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | active#( and( mark( X1 ) , X2 ) ) |
active#( and( tt , X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | active#( plus( mark( X1 ) , mark( X2 ) ) ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
active#( plus( N , s( M ) ) ) | → | mark#( s( plus( N , M ) ) ) |
mark#( s( X ) ) | → | mark#( X ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | x1 + x2 | |
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | x1 + 2 x2 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | x1 | |
[s (x1) ] | = | x1 + 2 | |
[0] | = | 0 | |
[tt] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | active#( and( mark( X1 ) , X2 ) ) |
active#( and( tt , X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | active#( plus( mark( X1 ) , mark( X2 ) ) ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | 1 | |
[mark (x1) ] | = | 0 | |
[active# (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | 0 | |
[active (x1) ] | = | 0 | |
[mark# (x1) ] | = | 2 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[tt] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | active#( and( mark( X1 ) , X2 ) ) |
active#( and( tt , X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | 2 x1 + 2 x2 | |
[mark (x1) ] | = | x1 | |
[active# (x1) ] | = | 2 x1 | |
[plus (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
[active (x1) ] | = | x1 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[tt] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( and( X1 , X2 ) ) | → | active#( and( mark( X1 ) , X2 ) ) |
active#( and( tt , X ) ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | x1 + 3 x2 + 2 | |
[mark (x1) ] | = | 2 x1 | |
[active# (x1) ] | = | x1 + 1 | |
[active (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | 2 x1 + 3 | |
[mark# (x1) ] | = | 2 x1 | |
[0] | = | 3 | |
[s (x1) ] | = | 0 | |
[tt] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
and#( X1 , mark( X2 ) ) | → | and#( X1 , X2 ) |
and#( mark( X1 ) , X2 ) | → | and#( X1 , X2 ) |
and#( active( X1 ) , X2 ) | → | and#( X1 , X2 ) |
and#( X1 , active( X2 ) ) | → | and#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 3 x1 + 1 | |
[and (x1, x2) ] | = | 3 x1 + 1 | |
[active (x1) ] | = | x1 + 3 | |
[plus (x1, x2) ] | = | 3 x1 + 3 | |
[0] | = | 2 | |
[s (x1) ] | = | 1 | |
[and# (x1, x2) ] | = | 3 x1 + x2 | |
[tt] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
plus#( X1 , mark( X2 ) ) | → | plus#( X1 , X2 ) |
plus#( mark( X1 ) , X2 ) | → | plus#( X1 , X2 ) |
plus#( active( X1 ) , X2 ) | → | plus#( X1 , X2 ) |
plus#( X1 , active( X2 ) ) | → | plus#( X1 , X2 ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | 3 x1 + 1 | |
[and (x1, x2) ] | = | 3 x1 + 1 | |
[active (x1) ] | = | x1 + 3 | |
[plus (x1, x2) ] | = | 3 x1 + 3 | |
[0] | = | 2 | |
[s (x1) ] | = | 1 | |
[plus# (x1, x2) ] | = | 3 x1 + x2 | |
[tt] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
s#( active( X ) ) | → | s#( X ) |
s#( mark( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[mark (x1) ] | = | x1 + 1 | |
[and (x1, x2) ] | = | 2 x1 + 1 | |
[active (x1) ] | = | x1 | |
[plus (x1, x2) ] | = | x1 + 1 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[s# (x1) ] | = | x1 | |
[tt] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
s#( active( X ) ) | → | s#( X ) |
Linear polynomial interpretation over the naturals
[and (x1, x2) ] | = | 0 | |
[mark (x1) ] | = | 1 | |
[active (x1) ] | = | 2 x1 + 1 | |
[plus (x1, x2) ] | = | 0 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[s# (x1) ] | = | x1 | |
[tt] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.