Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | U11 : symb | U12 : symb | _0_1 : symb | a__U11 : symb | a__U12 : symb | a__plus : symb | mark : symb | plus : symb | s : symb | tt : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.U11 => 3 | M.U12 => 3 | M._0_1 => 0 | M.a__U11 => 3 | M.a__U12 => 3 | M.a__plus => 2 | M.mark => 1 | M.plus => 2 | M.s => 1 | M.tt => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition U11 x3 x2 x1 := F0 M.U11 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition U12 x3 x2 x1 := F0 M.U12 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition _0_1 := F0 M._0_1 Vnil. Definition a__U11 x3 x2 x1 := F0 M.a__U11 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition a__U12 x3 x2 x1 := F0 M.a__U12 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition a__plus x2 x1 := F0 M.a__plus (Vcons x2 (Vcons x1 Vnil)). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). Definition plus x2 x1 := F0 M.plus (Vcons x2 (Vcons x1 Vnil)). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition tt := F0 M.tt Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.a__U11 S0.tt (V0 0) (V0 1)) (S0.a__U12 S0.tt (V0 0) (V0 1)) :: R0 (S0.a__U12 S0.tt (V0 0) (V0 1)) (S0.s (S0.a__plus (S0.mark (V0 1)) (S0.mark (V0 0)))) :: R0 (S0.a__plus (V0 0) S0._0_1) (S0.mark (V0 0)) :: R0 (S0.a__plus (V0 0) (S0.s (V0 1))) (S0.a__U11 S0.tt (V0 1) (V0 0)) :: R0 (S0.mark (S0.U11 (V0 0) (V0 1) (V0 2))) (S0.a__U11 (S0.mark (V0 0)) (V0 1) (V0 2)) :: R0 (S0.mark (S0.U12 (V0 0) (V0 1) (V0 2))) (S0.a__U12 (S0.mark (V0 0)) (V0 1) (V0 2)) :: R0 (S0.mark (S0.plus (V0 0) (V0 1))) (S0.a__plus (S0.mark (V0 0)) (S0.mark (V0 1))) :: R0 (S0.mark S0.tt) S0.tt :: R0 (S0.mark (S0.s (V0 0))) (S0.s (S0.mark (V0 0))) :: R0 (S0.mark S0._0_1) S0._0_1 :: R0 (S0.a__U11 (V0 0) (V0 1) (V0 2)) (S0.U11 (V0 0) (V0 1) (V0 2)) :: R0 (S0.a__U12 (V0 0) (V0 1) (V0 2)) (S0.U12 (V0 0) (V0 1) (V0 2)) :: R0 (S0.a__plus (V0 0) (V0 1)) (S0.plus (V0 0) (V0 1)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hU11 x3 x2 x1 := F1 (hd_symb s1_p M.U11) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition U11 x3 x2 x1 := F1 (int_symb s1_p M.U11) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hU12 x3 x2 x1 := F1 (hd_symb s1_p M.U12) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition U12 x3 x2 x1 := F1 (int_symb s1_p M.U12) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition ha__U11 x3 x2 x1 := F1 (hd_symb s1_p M.a__U11) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition a__U11 x3 x2 x1 := F1 (int_symb s1_p M.a__U11) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition ha__U12 x3 x2 x1 := F1 (hd_symb s1_p M.a__U12) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition a__U12 x3 x2 x1 := F1 (int_symb s1_p M.a__U12) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition ha__plus x2 x1 := F1 (hd_symb s1_p M.a__plus) (Vcons x2 (Vcons x1 Vnil)). Definition a__plus x2 x1 := F1 (int_symb s1_p M.a__plus) (Vcons x2 (Vcons x1 Vnil)). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). Definition hplus x2 x1 := F1 (hd_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition plus x2 x1 := F1 (int_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition htt := F1 (hd_symb s1_p M.tt) Vnil. Definition tt := F1 (int_symb s1_p M.tt) Vnil. End S1. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a__U11) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M.a__U11) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.tt) => nil | (int_symb M.tt) => (1%Z, Vnil) :: nil | (hd_symb M.a__U12) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M.a__U12) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.a__plus) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.a__plus) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.mark) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (3%Z, Vnil) :: nil | (hd_symb M.U11) => nil | (int_symb M.U11) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.U12) => nil | (int_symb M.U12) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.plus) => nil | (int_symb M.plus) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.ha__U12 (S1.tt) (V1 0) (V1 1)) (S1.ha__plus (S1.mark (V1 1)) (S1.mark (V1 0))) :: nil) :: ( R1 (S1.ha__U11 (S1.tt) (V1 0) (V1 1)) (S1.ha__U12 (S1.tt) (V1 0) (V1 1)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. Qed.