Require terminaison. Require Relations. Require term. Require List. Require equational_theory. Require rpo_extension. Require equational_extension. Require closure_extension. Require term_extension. Require dp. Require Inclusion. Require or_ext_generated. Require ZArith. Require ring_extention. Require Zwf. Require Inverse_Image. Require matrix. Require more_list_extention. Import List. Import ZArith. Set Implicit Arguments. Module algebra. Module F <:term.Signature. Inductive symb : Set := (* id_app *) | id_app : symb (* id_last *) | id_last : symb (* id_nil *) | id_nil : symb (* id_reverse *) | id_reverse : symb (* id_hd *) | id_hd : symb (* id_compose *) | id_compose : symb (* id_init *) | id_init : symb (* id_cons *) | id_cons : symb (* id_reverse2 *) | id_reverse2 : symb (* id_tl *) | id_tl : symb . Definition symb_eq_bool (f1 f2:symb) : bool := match f1,f2 with | id_app,id_app => true | id_last,id_last => true | id_nil,id_nil => true | id_reverse,id_reverse => true | id_hd,id_hd => true | id_compose,id_compose => true | id_init,id_init => true | id_cons,id_cons => true | id_reverse2,id_reverse2 => true | id_tl,id_tl => true | _,_ => false end. (* Proof of decidability of equality over symb *) Definition symb_eq_bool_ok(f1 f2:symb) : match symb_eq_bool f1 f2 with | true => f1 = f2 | false => f1 <> f2 end. Proof. intros f1 f2. refine match f1 as u1,f2 as u2 return match symb_eq_bool u1 u2 return Prop with | true => u1 = u2 | false => u1 <> u2 end with | id_app,id_app => refl_equal _ | id_last,id_last => refl_equal _ | id_nil,id_nil => refl_equal _ | id_reverse,id_reverse => refl_equal _ | id_hd,id_hd => refl_equal _ | id_compose,id_compose => refl_equal _ | id_init,id_init => refl_equal _ | id_cons,id_cons => refl_equal _ | id_reverse2,id_reverse2 => refl_equal _ | id_tl,id_tl => refl_equal _ | _,_ => _ end;intros abs;discriminate. Defined. Definition arity (f:symb) := match f with | id_app => term.Free 2 | id_last => term.Free 0 | id_nil => term.Free 0 | id_reverse => term.Free 0 | id_hd => term.Free 0 | id_compose => term.Free 0 | id_init => term.Free 0 | id_cons => term.Free 0 | id_reverse2 => term.Free 0 | id_tl => term.Free 0 end. Definition symb_order (f1 f2:symb) : bool := match f1,f2 with | id_app,id_app => true | id_app,id_last => false | id_app,id_nil => false | id_app,id_reverse => false | id_app,id_hd => false | id_app,id_compose => false | id_app,id_init => false | id_app,id_cons => false | id_app,id_reverse2 => false | id_app,id_tl => false | id_last,id_app => true | id_last,id_last => true | id_last,id_nil => false | id_last,id_reverse => false | id_last,id_hd => false | id_last,id_compose => false | id_last,id_init => false | id_last,id_cons => false | id_last,id_reverse2 => false | id_last,id_tl => false | id_nil,id_app => true | id_nil,id_last => true | id_nil,id_nil => true | id_nil,id_reverse => false | id_nil,id_hd => false | id_nil,id_compose => false | id_nil,id_init => false | id_nil,id_cons => false | id_nil,id_reverse2 => false | id_nil,id_tl => false | id_reverse,id_app => true | id_reverse,id_last => true | id_reverse,id_nil => true | id_reverse,id_reverse => true | id_reverse,id_hd => false | id_reverse,id_compose => false | id_reverse,id_init => false | id_reverse,id_cons => false | id_reverse,id_reverse2 => false | id_reverse,id_tl => false | id_hd,id_app => true | id_hd,id_last => true | id_hd,id_nil => true | id_hd,id_reverse => true | id_hd,id_hd => true | id_hd,id_compose => false | id_hd,id_init => false | id_hd,id_cons => false | id_hd,id_reverse2 => false | id_hd,id_tl => false | id_compose,id_app => true | id_compose,id_last => true | id_compose,id_nil => true | id_compose,id_reverse => true | id_compose,id_hd => true | id_compose,id_compose => true | id_compose,id_init => false | id_compose,id_cons => false | id_compose,id_reverse2 => false | id_compose,id_tl => false | id_init,id_app => true | id_init,id_last => true | id_init,id_nil => true | id_init,id_reverse => true | id_init,id_hd => true | id_init,id_compose => true | id_init,id_init => true | id_init,id_cons => false | id_init,id_reverse2 => false | id_init,id_tl => false | id_cons,id_app => true | id_cons,id_last => true | id_cons,id_nil => true | id_cons,id_reverse => true | id_cons,id_hd => true | id_cons,id_compose => true | id_cons,id_init => true | id_cons,id_cons => true | id_cons,id_reverse2 => false | id_cons,id_tl => false | id_reverse2,id_app => true | id_reverse2,id_last => true | id_reverse2,id_nil => true | id_reverse2,id_reverse => true | id_reverse2,id_hd => true | id_reverse2,id_compose => true | id_reverse2,id_init => true | id_reverse2,id_cons => true | id_reverse2,id_reverse2 => true | id_reverse2,id_tl => false | id_tl,id_app => true | id_tl,id_last => true | id_tl,id_nil => true | id_tl,id_reverse => true | id_tl,id_hd => true | id_tl,id_compose => true | id_tl,id_init => true | id_tl,id_cons => true | id_tl,id_reverse2 => true | id_tl,id_tl => true end. Module Symb. Definition A := symb. Definition eq_A := @eq A. Definition eq_proof : equivalence A eq_A. Proof. constructor. red ;reflexivity . red ;intros ;transitivity y ;assumption. red ;intros ;symmetry ;assumption. Defined. Add Relation A eq_A reflexivity proved by (@equiv_refl _ _ eq_proof) symmetry proved by (@equiv_sym _ _ eq_proof) transitivity proved by (@equiv_trans _ _ eq_proof) as EQA . Definition eq_bool := symb_eq_bool. Definition eq_bool_ok := symb_eq_bool_ok. End Symb. Export Symb. End F. Module Alg := term.Make'(F)(term_extension.IntVars). Module Alg_ext := term_extension.Make(Alg). Module EQT := equational_theory.Make(Alg). Module EQT_ext := equational_extension.Make(EQT). End algebra. Module R_xml_0_deep_rew. Inductive R_xml_0_rules : algebra.Alg.term ->algebra.Alg.term ->Prop := (* app(app(app(compose,f_),g_),x_) -> app(g_,app(f_,x_)) *) | R_xml_0_rule_0 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Var 1):: (algebra.Alg.Var 3)::nil))::nil)) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Var 1)::nil)):: (algebra.Alg.Var 2)::nil))::(algebra.Alg.Var 3)::nil)) (* app(reverse,l_) -> app(app(reverse2,l_),nil) *) | R_xml_0_rule_1 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_nil nil)::nil)) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse nil)::(algebra.Alg.Var 4)::nil)) (* app(app(reverse2,nil),l_) -> l_ *) | R_xml_0_rule_2 : R_xml_0_rules (algebra.Alg.Var 4) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_nil nil)::nil))::(algebra.Alg.Var 4)::nil)) (* app(app(reverse2,app(app(cons,x_),xs_)),l_) -> app(app(reverse2,xs_),app(app(cons,x_),l_)) *) | R_xml_0_rule_3 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Var 5)::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: (algebra.Alg.Var 3)::nil)):: (algebra.Alg.Var 4)::nil))::nil)) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::(algebra.Alg.Var 3)::nil)):: (algebra.Alg.Var 5)::nil))::nil))::(algebra.Alg.Var 4)::nil)) (* app(hd,app(app(cons,x_),xs_)) -> x_ *) | R_xml_0_rule_4 : R_xml_0_rules (algebra.Alg.Var 3) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_hd nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: (algebra.Alg.Var 3)::nil))::(algebra.Alg.Var 5)::nil))::nil)) (* app(tl,app(app(cons,x_),xs_)) -> xs_ *) | R_xml_0_rule_5 : R_xml_0_rules (algebra.Alg.Var 5) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_tl nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: (algebra.Alg.Var 3)::nil))::(algebra.Alg.Var 5)::nil))::nil)) (* last -> app(app(compose,hd),reverse) *) | R_xml_0_rule_6 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_hd nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil)) (algebra.Alg.Term algebra.F.id_last nil) (* init -> app(app(compose,reverse),app(app(compose,tl),reverse)) *) | R_xml_0_rule_7 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_reverse nil)::nil)):: (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_tl nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil))::nil)) (algebra.Alg.Term algebra.F.id_init nil) . Definition R_xml_0_rule_as_list_0 := ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Var 1)::nil)):: (algebra.Alg.Var 2)::nil))::(algebra.Alg.Var 3)::nil)), (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Var 1):: (algebra.Alg.Var 3)::nil))::nil)))::nil. Definition R_xml_0_rule_as_list_1 := ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse nil)::(algebra.Alg.Var 4)::nil)), (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: (algebra.Alg.Var 4)::nil))::(algebra.Alg.Term algebra.F.id_nil nil)::nil)))::R_xml_0_rule_as_list_0. Definition R_xml_0_rule_as_list_2 := ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_nil nil)::nil))::(algebra.Alg.Var 4)::nil)), (algebra.Alg.Var 4))::R_xml_0_rule_as_list_1. Definition R_xml_0_rule_as_list_3 := ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::(algebra.Alg.Var 3)::nil)):: (algebra.Alg.Var 5)::nil))::nil))::(algebra.Alg.Var 4)::nil)), (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: (algebra.Alg.Var 5)::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::(algebra.Alg.Var 3)::nil)):: (algebra.Alg.Var 4)::nil))::nil)))::R_xml_0_rule_as_list_2. Definition R_xml_0_rule_as_list_4 := ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_hd nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: (algebra.Alg.Var 3)::nil))::(algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Var 3))::R_xml_0_rule_as_list_3. Definition R_xml_0_rule_as_list_5 := ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_tl nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: (algebra.Alg.Var 3)::nil))::(algebra.Alg.Var 5)::nil))::nil)), (algebra.Alg.Var 5))::R_xml_0_rule_as_list_4. Definition R_xml_0_rule_as_list_6 := ((algebra.Alg.Term algebra.F.id_last nil), (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_hd nil)::nil))::(algebra.Alg.Term algebra.F.id_reverse nil)::nil)))::R_xml_0_rule_as_list_5. Definition R_xml_0_rule_as_list_7 := ((algebra.Alg.Term algebra.F.id_init nil), (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_reverse nil)::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_tl nil)::nil))::(algebra.Alg.Term algebra.F.id_reverse nil)::nil))::nil))):: R_xml_0_rule_as_list_6. Definition R_xml_0_rule_as_list := R_xml_0_rule_as_list_7. Lemma R_xml_0_rules_included : forall l r, R_xml_0_rules r l <-> In (l,r) R_xml_0_rule_as_list. Proof. intros l r. constructor. intros H. case H;clear H; (apply (more_list.mem_impl_in (@eq (algebra.Alg.term*algebra.Alg.term))); [tauto|idtac]); match goal with | |- _ _ _ ?t ?l => let u := fresh "u" in (generalize (more_list.mem_bool_ok _ _ algebra.Alg_ext.eq_term_term_bool_ok t l); set (u:=more_list.mem_bool algebra.Alg_ext.eq_term_term_bool t l) in *; vm_compute in u|-;unfold u in *;clear u;intros H;refine H) end . intros H. vm_compute in H|-. rewrite <- or_ext_generated.or9_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 8. injection H;intros ;subst;constructor 7. injection H;intros ;subst;constructor 6. injection H;intros ;subst;constructor 5. injection H;intros ;subst;constructor 4. injection H;intros ;subst;constructor 3. injection H;intros ;subst;constructor 2. injection H;intros ;subst;constructor 1. elim H. Qed. Lemma R_xml_0_non_var : forall x t, ~R_xml_0_rules t (algebra.EQT.T.Var x). Proof. intros x t H. inversion H. Qed. Lemma R_xml_0_reg : forall s t, (R_xml_0_rules s t) -> forall x, In x (algebra.Alg.var_list s) ->In x (algebra.Alg.var_list t). Proof. intros s t H. inversion H;intros x Hx; (apply (more_list.mem_impl_in (@eq algebra.Alg.variable));[tauto|idtac]); apply (more_list.in_impl_mem (@eq algebra.Alg.variable)) in Hx; vm_compute in Hx|-*;tauto. Qed. Inductive and_7 (x7 x8 x9 x10 x11 x12 x13:Prop) : Prop := | conj_7 : x7->x8->x9->x10->x11->x12->x13->and_7 x7 x8 x9 x10 x11 x12 x13 . Lemma are_constuctors_of_R_xml_0 : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> and_7 (t = (algebra.Alg.Term algebra.F.id_nil nil) -> t' = (algebra.Alg.Term algebra.F.id_nil nil)) (t = (algebra.Alg.Term algebra.F.id_reverse nil) -> t' = (algebra.Alg.Term algebra.F.id_reverse nil)) (t = (algebra.Alg.Term algebra.F.id_hd nil) -> t' = (algebra.Alg.Term algebra.F.id_hd nil)) (t = (algebra.Alg.Term algebra.F.id_compose nil) -> t' = (algebra.Alg.Term algebra.F.id_compose nil)) (t = (algebra.Alg.Term algebra.F.id_cons nil) -> t' = (algebra.Alg.Term algebra.F.id_cons nil)) (t = (algebra.Alg.Term algebra.F.id_reverse2 nil) -> t' = (algebra.Alg.Term algebra.F.id_reverse2 nil)) (t = (algebra.Alg.Term algebra.F.id_tl nil) -> t' = (algebra.Alg.Term algebra.F.id_tl nil)). Proof. intros t t' H. induction H as [|y IH z z_to_y] using closure_extension.refl_trans_clos_ind2. constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. inversion z_to_y as [t1 t2 H H0 H1|f l1 l2 H0 H H2];clear z_to_y;subst. inversion H as [t1 t2 sigma H2 H1 H0];clear H IH;subst;inversion H2; clear ;constructor;try (intros until 0 );clear ;intros abs; discriminate abs. destruct IH as [H_id_nil H_id_reverse H_id_hd H_id_compose H_id_cons H_id_reverse2 H_id_tl]. constructor. clear H_id_reverse H_id_hd H_id_compose H_id_cons H_id_reverse2 H_id_tl; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_nil H_id_hd H_id_compose H_id_cons H_id_reverse2 H_id_tl; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_nil H_id_reverse H_id_compose H_id_cons H_id_reverse2 H_id_tl; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_nil H_id_reverse H_id_hd H_id_cons H_id_reverse2 H_id_tl; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_nil H_id_reverse H_id_hd H_id_compose H_id_reverse2 H_id_tl; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_nil H_id_reverse H_id_hd H_id_compose H_id_cons H_id_tl; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_nil H_id_reverse H_id_hd H_id_compose H_id_cons H_id_reverse2; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). Qed. Lemma id_nil_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_nil nil) -> t' = (algebra.Alg.Term algebra.F.id_nil nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_reverse_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_reverse nil) -> t' = (algebra.Alg.Term algebra.F.id_reverse nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_hd_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_hd nil) -> t' = (algebra.Alg.Term algebra.F.id_hd nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_compose_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_compose nil) -> t' = (algebra.Alg.Term algebra.F.id_compose nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_cons_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_cons nil) -> t' = (algebra.Alg.Term algebra.F.id_cons nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_reverse2_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_reverse2 nil) -> t' = (algebra.Alg.Term algebra.F.id_reverse2 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_tl_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_tl nil) -> t' = (algebra.Alg.Term algebra.F.id_tl nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Ltac impossible_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_nil nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_nil_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_reverse nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_reverse_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_hd nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_hd_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_compose nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_compose_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_cons nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_cons_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_reverse2 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_reverse2_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_tl nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_tl_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) end . Ltac simplify_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_nil nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_nil_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_reverse nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_reverse_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_hd nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_hd_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_compose nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_compose_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_cons nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_cons_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_reverse2 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_reverse2_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_tl nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_tl_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) end . End R_xml_0_deep_rew. Module InterpGen := interp.Interp(algebra.EQT). Module ddp := dp.MakeDP(algebra.EQT). Module SymbType. Definition A := algebra.Alg.F.Symb.A. End SymbType. Module Symb_more_list := more_list_extention.Make(SymbType)(algebra.Alg.F.Symb). Module SymbSet := list_set.Make(algebra.F.Symb). Module Interp. Section S. Require Import interp. Hypothesis A : Type. Hypothesis Ale Alt Aeq : A -> A -> Prop. Hypothesis Aop : interp.ordering_pair Aeq Alt Ale. Hypothesis A0 : A. Notation Local "a <= b" := (Ale a b). Hypothesis P_id_app : A ->A ->A. Hypothesis P_id_last : A. Hypothesis P_id_nil : A. Hypothesis P_id_reverse : A. Hypothesis P_id_hd : A. Hypothesis P_id_compose : A. Hypothesis P_id_init : A. Hypothesis P_id_cons : A. Hypothesis P_id_reverse2 : A. Hypothesis P_id_tl : A. Hypothesis P_id_app_monotonic : forall x8 x10 x9 x7, (A0 <= x10)/\ (x10 <= x9) -> (A0 <= x8)/\ (x8 <= x7) ->P_id_app x8 x10 <= P_id_app x7 x9. Hypothesis P_id_app_bounded : forall x8 x7, (A0 <= x7) ->(A0 <= x8) ->A0 <= P_id_app x8 x7. Hypothesis P_id_last_bounded : A0 <= P_id_last . Hypothesis P_id_nil_bounded : A0 <= P_id_nil . Hypothesis P_id_reverse_bounded : A0 <= P_id_reverse . Hypothesis P_id_hd_bounded : A0 <= P_id_hd . Hypothesis P_id_compose_bounded : A0 <= P_id_compose . Hypothesis P_id_init_bounded : A0 <= P_id_init . Hypothesis P_id_cons_bounded : A0 <= P_id_cons . Hypothesis P_id_reverse2_bounded : A0 <= P_id_reverse2 . Hypothesis P_id_tl_bounded : A0 <= P_id_tl . Fixpoint measure t { struct t } := match t with | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_app (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_last | (algebra.Alg.Term algebra.F.id_nil nil) => P_id_nil | (algebra.Alg.Term algebra.F.id_reverse nil) => P_id_reverse | (algebra.Alg.Term algebra.F.id_hd nil) => P_id_hd | (algebra.Alg.Term algebra.F.id_compose nil) => P_id_compose | (algebra.Alg.Term algebra.F.id_init nil) => P_id_init | (algebra.Alg.Term algebra.F.id_cons nil) => P_id_cons | (algebra.Alg.Term algebra.F.id_reverse2 nil) => P_id_reverse2 | (algebra.Alg.Term algebra.F.id_tl nil) => P_id_tl | _ => A0 end. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_app (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_last | (algebra.Alg.Term algebra.F.id_nil nil) => P_id_nil | (algebra.Alg.Term algebra.F.id_reverse nil) => P_id_reverse | (algebra.Alg.Term algebra.F.id_hd nil) => P_id_hd | (algebra.Alg.Term algebra.F.id_compose nil) => P_id_compose | (algebra.Alg.Term algebra.F.id_init nil) => P_id_init | (algebra.Alg.Term algebra.F.id_cons nil) => P_id_cons | (algebra.Alg.Term algebra.F.id_reverse2 nil) => P_id_reverse2 | (algebra.Alg.Term algebra.F.id_tl nil) => P_id_tl | _ => A0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Definition Pols f : InterpGen.Pol_type A (InterpGen.get_arity f) := match f with | algebra.F.id_app => P_id_app | algebra.F.id_last => P_id_last | algebra.F.id_nil => P_id_nil | algebra.F.id_reverse => P_id_reverse | algebra.F.id_hd => P_id_hd | algebra.F.id_compose => P_id_compose | algebra.F.id_init => P_id_init | algebra.F.id_cons => P_id_cons | algebra.F.id_reverse2 => P_id_reverse2 | algebra.F.id_tl => P_id_tl end. Lemma same_measure : forall t, measure t = InterpGen.measure A0 Pols t. Proof. fix 1 . intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_app => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_last => match l with | nil => _ | _::_ => _ end | algebra.F.id_nil => match l with | nil => _ | _::_ => _ end | algebra.F.id_reverse => match l with | nil => _ | _::_ => _ end | algebra.F.id_hd => match l with | nil => _ | _::_ => _ end | algebra.F.id_compose => match l with | nil => _ | _::_ => _ end | algebra.F.id_init => match l with | nil => _ | _::_ => _ end | algebra.F.id_cons => match l with | nil => _ | _::_ => _ end | algebra.F.id_reverse2 => match l with | nil => _ | _::_ => _ end | algebra.F.id_tl => match l with | nil => _ | _::_ => _ end end;simpl in |-*;unfold eq_rect_r, eq_rect, sym_eq in |-*; try (reflexivity );f_equal ;auto. Qed. Lemma measure_bounded : forall t, A0 <= measure t. Proof. intros t. rewrite same_measure in |-*. apply (InterpGen.measure_bounded Aop). intros f. case f. vm_compute in |-*;intros ;apply P_id_app_bounded;assumption. vm_compute in |-*;intros ;apply P_id_last_bounded;assumption. vm_compute in |-*;intros ;apply P_id_nil_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reverse_bounded;assumption. vm_compute in |-*;intros ;apply P_id_hd_bounded;assumption. vm_compute in |-*;intros ;apply P_id_compose_bounded;assumption. vm_compute in |-*;intros ;apply P_id_init_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reverse2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_tl_bounded;assumption. Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. intros . do 2 (rewrite same_measure in |-*). apply InterpGen.measure_star_monotonic with (1:=Aop) (Pols:=Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). intros f. case f. vm_compute in |-*;intros ;apply P_id_app_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). intros f. case f. vm_compute in |-*;intros ;apply P_id_app_bounded;assumption. vm_compute in |-*;intros ;apply P_id_last_bounded;assumption. vm_compute in |-*;intros ;apply P_id_nil_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reverse_bounded;assumption. vm_compute in |-*;intros ;apply P_id_hd_bounded;assumption. vm_compute in |-*;intros ;apply P_id_compose_bounded;assumption. vm_compute in |-*;intros ;apply P_id_init_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reverse2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_tl_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. assumption. Qed. Hypothesis P_id_INIT : A. Hypothesis P_id_APP : A ->A ->A. Hypothesis P_id_LAST : A. Hypothesis P_id_APP_monotonic : forall x8 x10 x9 x7, (A0 <= x10)/\ (x10 <= x9) -> (A0 <= x8)/\ (x8 <= x7) ->P_id_APP x8 x10 <= P_id_APP x7 x9. Definition marked_measure t := match t with | (algebra.Alg.Term algebra.F.id_init nil) => P_id_INIT | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_APP (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_LAST | _ => measure t end. Definition Marked_pols : forall f, (algebra.EQT.defined R_xml_0_deep_rew.R_xml_0_rules f) -> InterpGen.Pol_type A (InterpGen.get_arity f). Proof. intros f H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply (P_id_INIT ). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply (P_id_LAST ). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x8 x7;apply (P_id_APP x8 x7). discriminate H. Defined. Lemma same_marked_measure : forall t, marked_measure t = InterpGen.marked_measure A0 Pols Marked_pols (ddp.defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included) t. Proof. intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_app => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_last => match l with | nil => _ | _::_ => _ end | algebra.F.id_nil => match l with | nil => _ | _::_ => _ end | algebra.F.id_reverse => match l with | nil => _ | _::_ => _ end | algebra.F.id_hd => match l with | nil => _ | _::_ => _ end | algebra.F.id_compose => match l with | nil => _ | _::_ => _ end | algebra.F.id_init => match l with | nil => _ | _::_ => _ end | algebra.F.id_cons => match l with | nil => _ | _::_ => _ end | algebra.F.id_reverse2 => match l with | nil => _ | _::_ => _ end | algebra.F.id_tl => match l with | nil => _ | _::_ => _ end end. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . Qed. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_init nil) => P_id_INIT | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_APP (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_LAST | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. intros . do 2 (rewrite same_marked_measure in |-*). apply InterpGen.marked_measure_star_monotonic with (1:=Aop) (Pols:= Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_app_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_app_bounded;assumption. vm_compute in |-*;intros ;apply P_id_last_bounded;assumption. vm_compute in |-*;intros ;apply P_id_nil_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reverse_bounded;assumption. vm_compute in |-*;intros ;apply P_id_hd_bounded;assumption. vm_compute in |-*;intros ;apply P_id_compose_bounded;assumption. vm_compute in |-*;intros ;apply P_id_init_bounded;assumption. vm_compute in |-*;intros ;apply P_id_cons_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reverse2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_tl_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. clear f. intros f. clear H. intros H. generalize H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply (Aop.(le_refl)). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply (Aop.(le_refl)). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_APP_monotonic;assumption. discriminate H. assumption. Qed. End S. End Interp. Module InterpZ. Section S. Open Scope Z_scope. Hypothesis min_value : Z. Import ring_extention. Notation Local "'Alt'" := (Zwf.Zwf min_value). Notation Local "'Ale'" := Zle. Notation Local "'Aeq'" := (@eq Z). Notation Local "a <= b" := (Ale a b). Notation Local "a < b" := (Alt a b). Hypothesis P_id_app : Z ->Z ->Z. Hypothesis P_id_last : Z. Hypothesis P_id_nil : Z. Hypothesis P_id_reverse : Z. Hypothesis P_id_hd : Z. Hypothesis P_id_compose : Z. Hypothesis P_id_init : Z. Hypothesis P_id_cons : Z. Hypothesis P_id_reverse2 : Z. Hypothesis P_id_tl : Z. Hypothesis P_id_app_monotonic : forall x8 x10 x9 x7, (min_value <= x10)/\ (x10 <= x9) -> (min_value <= x8)/\ (x8 <= x7) ->P_id_app x8 x10 <= P_id_app x7 x9. Hypothesis P_id_app_bounded : forall x8 x7, (min_value <= x7) ->(min_value <= x8) ->min_value <= P_id_app x8 x7. Hypothesis P_id_last_bounded : min_value <= P_id_last . Hypothesis P_id_nil_bounded : min_value <= P_id_nil . Hypothesis P_id_reverse_bounded : min_value <= P_id_reverse . Hypothesis P_id_hd_bounded : min_value <= P_id_hd . Hypothesis P_id_compose_bounded : min_value <= P_id_compose . Hypothesis P_id_init_bounded : min_value <= P_id_init . Hypothesis P_id_cons_bounded : min_value <= P_id_cons . Hypothesis P_id_reverse2_bounded : min_value <= P_id_reverse2 . Hypothesis P_id_tl_bounded : min_value <= P_id_tl . Definition measure := Interp.measure min_value P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_app (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_last | (algebra.Alg.Term algebra.F.id_nil nil) => P_id_nil | (algebra.Alg.Term algebra.F.id_reverse nil) => P_id_reverse | (algebra.Alg.Term algebra.F.id_hd nil) => P_id_hd | (algebra.Alg.Term algebra.F.id_compose nil) => P_id_compose | (algebra.Alg.Term algebra.F.id_init nil) => P_id_init | (algebra.Alg.Term algebra.F.id_cons nil) => P_id_cons | (algebra.Alg.Term algebra.F.id_reverse2 nil) => P_id_reverse2 | (algebra.Alg.Term algebra.F.id_tl nil) => P_id_tl | _ => min_value end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, min_value <= measure t. Proof. unfold measure in |-*. apply Interp.measure_bounded with Alt Aeq; (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply Interp.measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. Qed. Hypothesis P_id_INIT : Z. Hypothesis P_id_APP : Z ->Z ->Z. Hypothesis P_id_LAST : Z. Hypothesis P_id_APP_monotonic : forall x8 x10 x9 x7, (min_value <= x10)/\ (x10 <= x9) -> (min_value <= x8)/\ (x8 <= x7) ->P_id_APP x8 x10 <= P_id_APP x7 x9. Definition marked_measure := Interp.marked_measure min_value P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl P_id_INIT P_id_APP P_id_LAST. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_init nil) => P_id_INIT | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_APP (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_LAST | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply Interp.marked_measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. intros ;apply P_id_APP_monotonic;assumption. Qed. End S. End InterpZ. Module WF_R_xml_0_deep_rew. Inductive DP_R_xml_0 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_0 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app (x2::(algebra.Alg.Term algebra.F.id_app (x1::x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_1 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app (x1::x3::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_2 : forall x8 x4 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_reverse nil) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::x4::nil))::(algebra.Alg.Term algebra.F.id_nil nil)::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_3 : forall x8 x4 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_reverse nil) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::x4::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_4 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::x5::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x4::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_5 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::x5::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_6 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x4::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_7 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_8 : DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_hd nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil)) (algebra.Alg.Term algebra.F.id_last nil) (* *) | DP_R_xml_0_9 : DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_hd nil)::nil)) (algebra.Alg.Term algebra.F.id_last nil) (* *) | DP_R_xml_0_10 : DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_reverse nil)::nil)):: (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_tl nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil))::nil)) (algebra.Alg.Term algebra.F.id_init nil) (* *) | DP_R_xml_0_11 : DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_reverse nil)::nil)) (algebra.Alg.Term algebra.F.id_init nil) (* *) | DP_R_xml_0_12 : DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_tl nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil)) (algebra.Alg.Term algebra.F.id_init nil) (* *) | DP_R_xml_0_13 : DP_R_xml_0 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil)::(algebra.Alg.Term algebra.F.id_tl nil)::nil)) (algebra.Alg.Term algebra.F.id_init nil) . Module ddp := dp.MakeDP(algebra.EQT). Lemma R_xml_0_dp_step_spec : forall x y, (ddp.dp_step R_xml_0_deep_rew.R_xml_0_rules x y) -> exists f, exists l1, exists l2, y = algebra.Alg.Term f l2/\ (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2)/\ (ddp.dp R_xml_0_deep_rew.R_xml_0_rules x (algebra.Alg.Term f l1)). Proof. intros x y H. induction H. inversion H. subst. destruct t0. refine ((False_ind) _ _). refine (R_xml_0_deep_rew.R_xml_0_non_var H0). simpl in H|-*. exists a. exists ((List.map) (algebra.Alg.apply_subst sigma) l). exists ((List.map) (algebra.Alg.apply_subst sigma) l). repeat (constructor). assumption. exists f. exists l2. exists l1. constructor. constructor. constructor. constructor. rewrite <- closure.rwr_list_trans_clos_one_step_list. assumption. assumption. Qed. Ltac included_dp_tac H := injection H;clear H;intros;subst; repeat (match goal with | H: closure.refl_trans_clos (closure.one_step_list _) (_::_) _ |- _=> let x := fresh "x" in let l := fresh "l" in let h1 := fresh "h" in let h2 := fresh "h" in let h3 := fresh "h" in destruct (@algebra.EQT_ext.one_step_list_star_decompose_cons _ _ _ _ H) as [x [l[h1[h2 h3]]]];clear H;subst | H: closure.refl_trans_clos (closure.one_step_list _) nil _ |- _ => rewrite (@algebra.EQT_ext.one_step_list_star_decompose_nil _ _ H) in *;clear H end );simpl; econstructor eassumption . Ltac dp_concl_tac h2 h cont_tac t := match t with | False => let h' := fresh "a" in (set (h':=t) in *;cont_tac h'; repeat ( let e := type of h in (match e with | ?t => unfold t in h|-; (case h; [abstract (clear h;intros h;injection h; clear h;intros ;subst; included_dp_tac h2)| clear h;intros h;clear t]) | ?t => unfold t in h|-;elim h end ) )) | or ?a ?b => let cont_tac h' := let h'' := fresh "a" in (set (h'':=or a h') in *;cont_tac h'') in (dp_concl_tac h2 h cont_tac b) end . Module WF_DP_R_xml_0. Inductive DP_R_xml_0_non_scc_1 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_1_0 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_non_scc_1 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: x3::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_1 : forall x y, (DP_R_xml_0_non_scc_1 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_2 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_2_0 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_non_scc_2 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: x5::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_2 : forall x y, (DP_R_xml_0_non_scc_2 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_3 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_3_0 : forall x8 x4 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_reverse nil) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_non_scc_3 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: x4::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Lemma acc_DP_R_xml_0_non_scc_3 : forall x y, (DP_R_xml_0_non_scc_3 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_scc_4 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_0 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0_scc_4 (algebra.Alg.Term algebra.F.id_app (x1::x3::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_1 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0_scc_4 (algebra.Alg.Term algebra.F.id_app (x2:: (algebra.Alg.Term algebra.F.id_app (x1:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_2 : forall x8 x4 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_reverse nil) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: x4::nil))::(algebra.Alg.Term algebra.F.id_nil nil)::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_3 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: x5::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: x3::nil))::x4::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_4 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: x3::nil))::x4::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_4. Inductive DP_R_xml_0_scc_4_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_large_0 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0_scc_4_large (algebra.Alg.Term algebra.F.id_app (x1:: x3::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_large_1 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0_scc_4_large (algebra.Alg.Term algebra.F.id_app (x2:: (algebra.Alg.Term algebra.F.id_app (x1:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_large_2 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4_large (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::x5::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil)):: x4::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_large_3 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4_large (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: x3::nil))::x4::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Inductive DP_R_xml_0_scc_4_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_strict_0 : forall x8 x4 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_reverse nil) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4_strict (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::x4::nil))::(algebra.Alg.Term algebra.F.id_nil nil)::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_4_large. Inductive DP_R_xml_0_scc_4_large_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_large_large_0 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4_large_large (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: x5::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil)):: x4::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_large_large_1 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4_large_large (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x4::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Inductive DP_R_xml_0_scc_4_large_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_large_strict_0 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0_scc_4_large_strict (algebra.Alg.Term algebra.F.id_app (x1::x3::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) (* *) | DP_R_xml_0_scc_4_large_strict_1 : forall x8 x2 x1 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: x1::nil))::x2::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x7) -> DP_R_xml_0_scc_4_large_strict (algebra.Alg.Term algebra.F.id_app (x2::(algebra.Alg.Term algebra.F.id_app (x1:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_4_large_large. Inductive DP_R_xml_0_scc_4_large_large_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_large_large_large_0 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4_large_large_large (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: x3::nil))::x4::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Inductive DP_R_xml_0_scc_4_large_large_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_large_large_strict_0 : forall x8 x4 x5 x3 x7, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil)::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil)::x3::nil))::x5::nil))::nil)) x8) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x4 x7) -> DP_R_xml_0_scc_4_large_large_strict (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_reverse2 nil):: x5::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_cons nil):: x3::nil))::x4::nil))::nil)) (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) . Module WF_DP_R_xml_0_scc_4_large_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_app (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_last := 2. Definition P_id_nil := 0. Definition P_id_reverse := 1. Definition P_id_hd := 0. Definition P_id_compose := 0. Definition P_id_init := 3. Definition P_id_cons := 0. Definition P_id_reverse2 := 1. Definition P_id_tl := 1. Lemma P_id_app_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_app x8 x10 <= P_id_app x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_app_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_app x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_last_bounded : 0 <= P_id_last . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_nil_bounded : 0 <= P_id_nil . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse_bounded : 0 <= P_id_reverse . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_hd_bounded : 0 <= P_id_hd . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_compose_bounded : 0 <= P_id_compose . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_init_bounded : 0 <= P_id_init . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : 0 <= P_id_cons . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse2_bounded : 0 <= P_id_reverse2 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_tl_bounded : 0 <= P_id_tl . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_app (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_last | (algebra.Alg.Term algebra.F.id_nil nil) => P_id_nil | (algebra.Alg.Term algebra.F.id_reverse nil) => P_id_reverse | (algebra.Alg.Term algebra.F.id_hd nil) => P_id_hd | (algebra.Alg.Term algebra.F.id_compose nil) => P_id_compose | (algebra.Alg.Term algebra.F.id_init nil) => P_id_init | (algebra.Alg.Term algebra.F.id_cons nil) => P_id_cons | (algebra.Alg.Term algebra.F.id_reverse2 nil) => P_id_reverse2 | (algebra.Alg.Term algebra.F.id_tl nil) => P_id_tl | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_INIT := 0. Definition P_id_APP (x7:Z) (x8:Z) := 2* x7. Definition P_id_LAST := 0. Lemma P_id_APP_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_APP x8 x10 <= P_id_APP x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl P_id_INIT P_id_APP P_id_LAST. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_init nil) => P_id_INIT | (algebra.Alg.Term algebra.F.id_app (x8:: x7::nil)) => P_id_APP (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_LAST | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. intros ;apply P_id_APP_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0_scc_4_large_large.DP_R_xml_0_scc_4_large_large_large . Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_4_large_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_app (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_last := 3. Definition P_id_nil := 0. Definition P_id_reverse := 0. Definition P_id_hd := 0. Definition P_id_compose := 0. Definition P_id_init := 2. Definition P_id_cons := 1. Definition P_id_reverse2 := 0. Definition P_id_tl := 1. Lemma P_id_app_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_app x8 x10 <= P_id_app x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_app_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_app x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_last_bounded : 0 <= P_id_last . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_nil_bounded : 0 <= P_id_nil . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse_bounded : 0 <= P_id_reverse . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_hd_bounded : 0 <= P_id_hd . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_compose_bounded : 0 <= P_id_compose . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_init_bounded : 0 <= P_id_init . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : 0 <= P_id_cons . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse2_bounded : 0 <= P_id_reverse2 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_tl_bounded : 0 <= P_id_tl . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_app (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_last | (algebra.Alg.Term algebra.F.id_nil nil) => P_id_nil | (algebra.Alg.Term algebra.F.id_reverse nil) => P_id_reverse | (algebra.Alg.Term algebra.F.id_hd nil) => P_id_hd | (algebra.Alg.Term algebra.F.id_compose nil) => P_id_compose | (algebra.Alg.Term algebra.F.id_init nil) => P_id_init | (algebra.Alg.Term algebra.F.id_cons nil) => P_id_cons | (algebra.Alg.Term algebra.F.id_reverse2 nil) => P_id_reverse2 | (algebra.Alg.Term algebra.F.id_tl nil) => P_id_tl | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_INIT := 0. Definition P_id_APP (x7:Z) (x8:Z) := 2* x7 + 1* x8. Definition P_id_LAST := 0. Lemma P_id_APP_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_APP x8 x10 <= P_id_APP x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl P_id_INIT P_id_APP P_id_LAST. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_init nil) => P_id_INIT | (algebra.Alg.Term algebra.F.id_app (x8:: x7::nil)) => P_id_APP (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_LAST | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. intros ;apply P_id_APP_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_4_large_large_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_4_large_large_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_4_large_large_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_4_large_large_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_4_large_large_large := WF_DP_R_xml_0_scc_4_large_large_large.wf. Lemma wf : well_founded WF_DP_R_xml_0_scc_4_large.DP_R_xml_0_scc_4_large_large. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_4_large_large_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_4_large_large_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_4_large_large_large_in_le; econstructor eassumption])). apply wf_DP_R_xml_0_scc_4_large_large_large. Qed. End WF_DP_R_xml_0_scc_4_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_app (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_last := 1. Definition P_id_nil := 0. Definition P_id_reverse := 0. Definition P_id_hd := 0. Definition P_id_compose := 1. Definition P_id_init := 2. Definition P_id_cons := 1. Definition P_id_reverse2 := 0. Definition P_id_tl := 0. Lemma P_id_app_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_app x8 x10 <= P_id_app x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_app_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_app x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_last_bounded : 0 <= P_id_last . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_nil_bounded : 0 <= P_id_nil . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse_bounded : 0 <= P_id_reverse . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_hd_bounded : 0 <= P_id_hd . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_compose_bounded : 0 <= P_id_compose . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_init_bounded : 0 <= P_id_init . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : 0 <= P_id_cons . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse2_bounded : 0 <= P_id_reverse2 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_tl_bounded : 0 <= P_id_tl . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_app (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_last | (algebra.Alg.Term algebra.F.id_nil nil) => P_id_nil | (algebra.Alg.Term algebra.F.id_reverse nil) => P_id_reverse | (algebra.Alg.Term algebra.F.id_hd nil) => P_id_hd | (algebra.Alg.Term algebra.F.id_compose nil) => P_id_compose | (algebra.Alg.Term algebra.F.id_init nil) => P_id_init | (algebra.Alg.Term algebra.F.id_cons nil) => P_id_cons | (algebra.Alg.Term algebra.F.id_reverse2 nil) => P_id_reverse2 | (algebra.Alg.Term algebra.F.id_tl nil) => P_id_tl | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_INIT := 0. Definition P_id_APP (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_LAST := 0. Lemma P_id_APP_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_APP x8 x10 <= P_id_APP x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl P_id_INIT P_id_APP P_id_LAST. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_init nil) => P_id_INIT | (algebra.Alg.Term algebra.F.id_app (x8:: x7::nil)) => P_id_APP (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_LAST | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. intros ;apply P_id_APP_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_4_large_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_4_large_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_4_large_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_4_large_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_4_large_large := WF_DP_R_xml_0_scc_4_large_large.wf. Lemma wf : well_founded WF_DP_R_xml_0_scc_4.DP_R_xml_0_scc_4_large. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_4_large_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_4_large_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_4_large_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_4_large_large. Qed. End WF_DP_R_xml_0_scc_4_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_app (x7:Z) (x8:Z) := 1* x7 + 1* x8. Definition P_id_last := 1. Definition P_id_nil := 0. Definition P_id_reverse := 1. Definition P_id_hd := 0. Definition P_id_compose := 0. Definition P_id_init := 3. Definition P_id_cons := 0. Definition P_id_reverse2 := 0. Definition P_id_tl := 0. Lemma P_id_app_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_app x8 x10 <= P_id_app x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_app_bounded : forall x8 x7, (0 <= x7) ->(0 <= x8) ->0 <= P_id_app x8 x7. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_last_bounded : 0 <= P_id_last . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_nil_bounded : 0 <= P_id_nil . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse_bounded : 0 <= P_id_reverse . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_hd_bounded : 0 <= P_id_hd . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_compose_bounded : 0 <= P_id_compose . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_init_bounded : 0 <= P_id_init . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_cons_bounded : 0 <= P_id_cons . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reverse2_bounded : 0 <= P_id_reverse2 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_tl_bounded : 0 <= P_id_tl . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_app (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_last | (algebra.Alg.Term algebra.F.id_nil nil) => P_id_nil | (algebra.Alg.Term algebra.F.id_reverse nil) => P_id_reverse | (algebra.Alg.Term algebra.F.id_hd nil) => P_id_hd | (algebra.Alg.Term algebra.F.id_compose nil) => P_id_compose | (algebra.Alg.Term algebra.F.id_init nil) => P_id_init | (algebra.Alg.Term algebra.F.id_cons nil) => P_id_cons | (algebra.Alg.Term algebra.F.id_reverse2 nil) => P_id_reverse2 | (algebra.Alg.Term algebra.F.id_tl nil) => P_id_tl | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_INIT := 0. Definition P_id_APP (x7:Z) (x8:Z) := 2* x7 + 2* x8. Definition P_id_LAST := 0. Lemma P_id_APP_monotonic : forall x8 x10 x9 x7, (0 <= x10)/\ (x10 <= x9) -> (0 <= x8)/\ (x8 <= x7) ->P_id_APP x8 x10 <= P_id_APP x7 x9. Proof. intros x10 x9 x8 x7. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_app P_id_last P_id_nil P_id_reverse P_id_hd P_id_compose P_id_init P_id_cons P_id_reverse2 P_id_tl P_id_INIT P_id_APP P_id_LAST. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_init nil) => P_id_INIT | (algebra.Alg.Term algebra.F.id_app (x8::x7::nil)) => P_id_APP (measure x8) (measure x7) | (algebra.Alg.Term algebra.F.id_last nil) => P_id_LAST | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_app_monotonic;assumption. intros ;apply P_id_app_bounded;assumption. intros ;apply P_id_last_bounded;assumption. intros ;apply P_id_nil_bounded;assumption. intros ;apply P_id_reverse_bounded;assumption. intros ;apply P_id_hd_bounded;assumption. intros ;apply P_id_compose_bounded;assumption. intros ;apply P_id_init_bounded;assumption. intros ;apply P_id_cons_bounded;assumption. intros ;apply P_id_reverse2_bounded;assumption. intros ;apply P_id_tl_bounded;assumption. apply rules_monotonic. intros ;apply P_id_APP_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_4_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_4_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_4_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_4_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_4_large := WF_DP_R_xml_0_scc_4_large.wf. Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_4. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_4_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_4_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_4_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_4_large. Qed. End WF_DP_R_xml_0_scc_4. Definition wf_DP_R_xml_0_scc_4 := WF_DP_R_xml_0_scc_4.wf. Lemma acc_DP_R_xml_0_scc_4 : forall x y, (DP_R_xml_0_scc_4 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_4). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))). apply wf_DP_R_xml_0_scc_4. Qed. Inductive DP_R_xml_0_non_scc_5 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_5_0 : DP_R_xml_0_non_scc_5 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: (algebra.Alg.Term algebra.F.id_tl nil)::nil)) (algebra.Alg.Term algebra.F.id_init nil) . Lemma acc_DP_R_xml_0_non_scc_5 : forall x y, (DP_R_xml_0_non_scc_5 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))). Qed. Inductive DP_R_xml_0_non_scc_6 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_6_0 : DP_R_xml_0_non_scc_6 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: (algebra.Alg.Term algebra.F.id_tl nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil)) (algebra.Alg.Term algebra.F.id_init nil) . Lemma acc_DP_R_xml_0_non_scc_6 : forall x y, (DP_R_xml_0_non_scc_6 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))). Qed. Inductive DP_R_xml_0_non_scc_7 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_7_0 : DP_R_xml_0_non_scc_7 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil)) (algebra.Alg.Term algebra.F.id_init nil) . Lemma acc_DP_R_xml_0_non_scc_7 : forall x y, (DP_R_xml_0_non_scc_7 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))). Qed. Inductive DP_R_xml_0_non_scc_8 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_8_0 : DP_R_xml_0_non_scc_8 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil))::(algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: (algebra.Alg.Term algebra.F.id_tl nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil))::nil)) (algebra.Alg.Term algebra.F.id_init nil) . Lemma acc_DP_R_xml_0_non_scc_8 : forall x y, (DP_R_xml_0_non_scc_8 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))). Qed. Inductive DP_R_xml_0_non_scc_9 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_9_0 : DP_R_xml_0_non_scc_9 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: (algebra.Alg.Term algebra.F.id_hd nil)::nil)) (algebra.Alg.Term algebra.F.id_last nil) . Lemma acc_DP_R_xml_0_non_scc_9 : forall x y, (DP_R_xml_0_non_scc_9 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))). Qed. Inductive DP_R_xml_0_non_scc_10 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_10_0 : DP_R_xml_0_non_scc_10 (algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_app ((algebra.Alg.Term algebra.F.id_compose nil):: (algebra.Alg.Term algebra.F.id_hd nil)::nil)):: (algebra.Alg.Term algebra.F.id_reverse nil)::nil)) (algebra.Alg.Term algebra.F.id_last nil) . Lemma acc_DP_R_xml_0_non_scc_10 : forall x y, (DP_R_xml_0_non_scc_10 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))))). Qed. Lemma wf : well_founded WF_R_xml_0_deep_rew.DP_R_xml_0. Proof. constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_non_scc_10; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_9; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_8; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_7; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (fail))))))))))))))))). Qed. End WF_DP_R_xml_0. Definition wf_H := WF_DP_R_xml_0.wf. Lemma wf : well_founded (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules). Proof. apply ddp.dp_criterion. apply R_xml_0_deep_rew.R_xml_0_non_var. apply R_xml_0_deep_rew.R_xml_0_reg. intros ; apply (ddp.constructor_defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included). refine (Inclusion.wf_incl _ _ _ _ wf_H). intros x y H. destruct (R_xml_0_dp_step_spec H) as [f [l1 [l2 [H1 [H2 H3]]]]]. destruct (ddp.dp_list_complete _ _ R_xml_0_deep_rew.R_xml_0_rules_included _ _ H3) as [x' [y' [sigma [h1 [h2 h3]]]]]. clear H3. subst. vm_compute in h3|-. let e := type of h3 in (dp_concl_tac h2 h3 ltac:(fun _ => idtac) e). Qed. End WF_R_xml_0_deep_rew. (* *** Local Variables: *** *** coq-prog-name: "coqtop" *** *** coq-prog-args: ("-emacs-U" "-I" "$COCCINELLE/examples" "-I" "$COCCINELLE/term_algebra" "-I" "$COCCINELLE/term_orderings" "-I" "$COCCINELLE/basis" "-I" "$COCCINELLE/list_extensions" "-I" "$COCCINELLE/examples/cime_trace/") *** *** compile-command: "coqc -I $COCCINELLE/term_algebra -I $COCCINELLE/term_orderings -I $COCCINELLE/basis -I $COCCINELLE/list_extensions -I $COCCINELLE/examples/cime_trace/ -I $COCCINELLE/examples/ c_output/strat/tpdb-5.0___TRS___higher-order___AProVE_HO___ReverseLastInit.trs/a3pat.v" *** *** End: *** *)