f#( g( x ) , g( y ) ) | → | f#( p( f( g( x ) , s( y ) ) ) , g( s( p( x ) ) ) ) |
f#( g( x ) , g( y ) ) | → | p#( f( g( x ) , s( y ) ) ) |
f#( g( x ) , g( y ) ) | → | f#( g( x ) , s( y ) ) |
f#( g( x ) , g( y ) ) | → | g#( x ) |
f#( g( x ) , g( y ) ) | → | g#( s( p( x ) ) ) |
f#( g( x ) , g( y ) ) | → | p#( x ) |
p#( 0 ) | → | g#( 0 ) |
g#( s( p( x ) ) ) | → | p#( x ) |
The dependency pairs are split into 1 component(s).
f#( g( x ) , g( y ) ) | → | f#( p( f( g( x ) , s( y ) ) ) , g( s( p( x ) ) ) ) |
Linear polynomial interpretation over the naturals
[f (x1, x2) ] | = | 0 | |
[s (x1) ] | = | x1 | |
[0] | = | 3 | |
[f# (x1, x2) ] | = | 2 x1 | |
[g (x1) ] | = | 2 x1 + 2 | |
[p (x1) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.