intersect'ii'in#( Xs , cons( X0 , Ys ) ) | → | u'1'1#( intersect'ii'in( Xs , Ys ) ) |
intersect'ii'in#( Xs , cons( X0 , Ys ) ) | → | intersect'ii'in#( Xs , Ys ) |
intersect'ii'in#( cons( X0 , Xs ) , Ys ) | → | u'2'1#( intersect'ii'in( Xs , Ys ) ) |
intersect'ii'in#( cons( X0 , Xs ) , Ys ) | → | intersect'ii'in#( Xs , Ys ) |
reduce'ii'in#( sequent( cons( if( A , B ) , Fs ) , Gs ) , NF ) | → | u'3'1#( reduce'ii'in( sequent( cons( x'2b( x'2d( B ) , A ) , Fs ) , Gs ) , NF ) ) |
reduce'ii'in#( sequent( cons( if( A , B ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( x'2b( x'2d( B ) , A ) , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( iff( A , B ) , Fs ) , Gs ) , NF ) | → | u'4'1#( reduce'ii'in( sequent( cons( x'2a( if( A , B ) , if( B , A ) ) , Fs ) , Gs ) , NF ) ) |
reduce'ii'in#( sequent( cons( iff( A , B ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( x'2a( if( A , B ) , if( B , A ) ) , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2a( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | u'5'1#( reduce'ii'in( sequent( cons( F1 , cons( F2 , Fs ) ) , Gs ) , NF ) ) |
reduce'ii'in#( sequent( cons( x'2a( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , cons( F2 , Fs ) ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | u'6'1#( reduce'ii'in( sequent( cons( F1 , Fs ) , Gs ) , NF ) , F2 , Fs , Gs , NF ) |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , Fs ) , Gs ) , NF ) |
u'6'1#( reduce'ii'out , F2 , Fs , Gs , NF ) | → | u'6'2#( reduce'ii'in( sequent( cons( F2 , Fs ) , Gs ) , NF ) ) |
u'6'1#( reduce'ii'out , F2 , Fs , Gs , NF ) | → | reduce'ii'in#( sequent( cons( F2 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2d( F1 ) , Fs ) , Gs ) , NF ) | → | u'7'1#( reduce'ii'in( sequent( Fs , cons( F1 , Gs ) ) , NF ) ) |
reduce'ii'in#( sequent( cons( x'2d( F1 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( F1 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( if( A , B ) , Gs ) ) , NF ) | → | u'8'1#( reduce'ii'in( sequent( Fs , cons( x'2b( x'2d( B ) , A ) , Gs ) ) , NF ) ) |
reduce'ii'in#( sequent( Fs , cons( if( A , B ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( x'2b( x'2d( B ) , A ) , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( iff( A , B ) , Gs ) ) , NF ) | → | u'9'1#( reduce'ii'in( sequent( Fs , cons( x'2a( if( A , B ) , if( B , A ) ) , Gs ) ) , NF ) ) |
reduce'ii'in#( sequent( Fs , cons( iff( A , B ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( x'2a( if( A , B ) , if( B , A ) ) , Gs ) ) , NF ) |
reduce'ii'in#( sequent( cons( p( V ) , Fs ) , Gs ) , sequent( Left , Right ) ) | → | u'10'1#( reduce'ii'in( sequent( Fs , Gs ) , sequent( cons( p( V ) , Left ) , Right ) ) ) |
reduce'ii'in#( sequent( cons( p( V ) , Fs ) , Gs ) , sequent( Left , Right ) ) | → | reduce'ii'in#( sequent( Fs , Gs ) , sequent( cons( p( V ) , Left ) , Right ) ) |
reduce'ii'in#( sequent( Fs , cons( x'2b( G1 , G2 ) , Gs ) ) , NF ) | → | u'11'1#( reduce'ii'in( sequent( Fs , cons( G1 , cons( G2 , Gs ) ) ) , NF ) ) |
reduce'ii'in#( sequent( Fs , cons( x'2b( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , cons( G2 , Gs ) ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2a( G1 , G2 ) , Gs ) ) , NF ) | → | u'12'1#( reduce'ii'in( sequent( Fs , cons( G1 , Gs ) ) , NF ) , Fs , G2 , Gs , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2a( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , Gs ) ) , NF ) |
u'12'1#( reduce'ii'out , Fs , G2 , Gs , NF ) | → | u'12'2#( reduce'ii'in( sequent( Fs , cons( G2 , Gs ) ) , NF ) ) |
u'12'1#( reduce'ii'out , Fs , G2 , Gs , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G2 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2d( G1 ) , Gs ) ) , NF ) | → | u'13'1#( reduce'ii'in( sequent( cons( G1 , Fs ) , Gs ) , NF ) ) |
reduce'ii'in#( sequent( Fs , cons( x'2d( G1 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( cons( G1 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( nil , cons( p( V ) , Gs ) ) , sequent( Left , Right ) ) | → | u'14'1#( reduce'ii'in( sequent( nil , Gs ) , sequent( Left , cons( p( V ) , Right ) ) ) ) |
reduce'ii'in#( sequent( nil , cons( p( V ) , Gs ) ) , sequent( Left , Right ) ) | → | reduce'ii'in#( sequent( nil , Gs ) , sequent( Left , cons( p( V ) , Right ) ) ) |
reduce'ii'in#( sequent( nil , nil ) , sequent( F1 , F2 ) ) | → | u'15'1#( intersect'ii'in( F1 , F2 ) ) |
reduce'ii'in#( sequent( nil , nil ) , sequent( F1 , F2 ) ) | → | intersect'ii'in#( F1 , F2 ) |
tautology'i'in#( F ) | → | u'16'1#( reduce'ii'in( sequent( nil , cons( F , nil ) ) , sequent( nil , nil ) ) ) |
tautology'i'in#( F ) | → | reduce'ii'in#( sequent( nil , cons( F , nil ) ) , sequent( nil , nil ) ) |
The dependency pairs are split into 2 component(s).
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | u'6'1#( reduce'ii'in( sequent( cons( F1 , Fs ) , Gs ) , NF ) , F2 , Fs , Gs , NF ) |
u'6'1#( reduce'ii'out , F2 , Fs , Gs , NF ) | → | reduce'ii'in#( sequent( cons( F2 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( if( A , B ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( x'2b( x'2d( B ) , A ) , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( iff( A , B ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( x'2a( if( A , B ) , if( B , A ) ) , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2a( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , cons( F2 , Fs ) ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2d( F1 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( F1 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( if( A , B ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( x'2b( x'2d( B ) , A ) , Gs ) ) , NF ) |
reduce'ii'in#( sequent( cons( p( V ) , Fs ) , Gs ) , sequent( Left , Right ) ) | → | reduce'ii'in#( sequent( Fs , Gs ) , sequent( cons( p( V ) , Left ) , Right ) ) |
reduce'ii'in#( sequent( Fs , cons( iff( A , B ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( x'2a( if( A , B ) , if( B , A ) ) , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2a( G1 , G2 ) , Gs ) ) , NF ) | → | u'12'1#( reduce'ii'in( sequent( Fs , cons( G1 , Gs ) ) , NF ) , Fs , G2 , Gs , NF ) |
u'12'1#( reduce'ii'out , Fs , G2 , Gs , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G2 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2b( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , cons( G2 , Gs ) ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2a( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2d( G1 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( cons( G1 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( nil , cons( p( V ) , Gs ) ) , sequent( Left , Right ) ) | → | reduce'ii'in#( sequent( nil , Gs ) , sequent( Left , cons( p( V ) , Right ) ) ) |
Linear polynomial interpretation over the naturals
[u'13'1 (x1) ] | = | 0 | |
[u'6'2 (x1) ] | = | 0 | |
[u'7'1 (x1) ] | = | 0 | |
[reduce'ii'in# (x1, x2) ] | = | 2 x1 + x2 | |
[u'15'1 (x1) ] | = | 0 | |
[u'5'1 (x1) ] | = | 0 | |
[intersect'ii'in (x1, x2) ] | = | 0 | |
[x'2a (x1, x2) ] | = | x1 + x2 | |
[u'12'1# (x1, ..., x5) ] | = | 2 x1 + 2 x2 + 2 x3 + x4 | |
[u'11'1 (x1) ] | = | 0 | |
[u'6'1 (x1, ..., x5) ] | = | 0 | |
[u'1'1 (x1) ] | = | 0 | |
[cons (x1, x2) ] | = | x1 + x2 | |
[u'12'2 (x1) ] | = | 0 | |
[u'12'1 (x1, ..., x5) ] | = | 0 | |
[iff (x1, x2) ] | = | 3 x1 + 3 x2 + 3 | |
[if (x1, x2) ] | = | x1 + 2 x2 | |
[u'8'1 (x1) ] | = | 0 | |
[x'2d (x1) ] | = | 2 x1 | |
[sequent (x1, x2) ] | = | x1 + x2 | |
[u'4'1 (x1) ] | = | 0 | |
[u'10'1 (x1) ] | = | 0 | |
[intersect'ii'out] | = | 0 | |
[u'3'1 (x1) ] | = | 0 | |
[p (x1) ] | = | 3 | |
[tautology'i'in (x1) ] | = | x1 + 2 | |
[u'2'1 (x1) ] | = | 0 | |
[nil] | = | 0 | |
[reduce'ii'in (x1, x2) ] | = | 0 | |
[reduce'ii'out] | = | 0 | |
[tautology'i'out] | = | 0 | |
[x'2b (x1, x2) ] | = | x1 + x2 | |
[u'6'1# (x1, ..., x5) ] | = | 2 x1 + 2 x2 + 2 x3 + x4 | |
[u'14'1 (x1) ] | = | 0 | |
[u'16'1 (x1) ] | = | 1 | |
[u'9'1 (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | u'6'1#( reduce'ii'in( sequent( cons( F1 , Fs ) , Gs ) , NF ) , F2 , Fs , Gs , NF ) |
u'6'1#( reduce'ii'out , F2 , Fs , Gs , NF ) | → | reduce'ii'in#( sequent( cons( F2 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( if( A , B ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( x'2b( x'2d( B ) , A ) , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2a( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , cons( F2 , Fs ) ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2d( F1 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( F1 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( if( A , B ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( x'2b( x'2d( B ) , A ) , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2a( G1 , G2 ) , Gs ) ) , NF ) | → | u'12'1#( reduce'ii'in( sequent( Fs , cons( G1 , Gs ) ) , NF ) , Fs , G2 , Gs , NF ) |
u'12'1#( reduce'ii'out , Fs , G2 , Gs , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G2 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2b( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , cons( G2 , Gs ) ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2a( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2d( G1 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( cons( G1 , Fs ) , Gs ) , NF ) |
Linear polynomial interpretation over the naturals
[u'13'1 (x1) ] | = | 0 | |
[u'6'2 (x1) ] | = | 0 | |
[u'7'1 (x1) ] | = | 0 | |
[reduce'ii'in# (x1, x2) ] | = | 2 x1 | |
[u'15'1 (x1) ] | = | 0 | |
[u'5'1 (x1) ] | = | 0 | |
[x'2a (x1, x2) ] | = | x1 + x2 + 3 | |
[u'12'1# (x1, ..., x5) ] | = | 2 x1 + 2 x2 + 2 x3 | |
[intersect'ii'in (x1, x2) ] | = | 0 | |
[u'11'1 (x1) ] | = | 0 | |
[u'6'1 (x1, ..., x5) ] | = | 0 | |
[u'1'1 (x1) ] | = | 0 | |
[cons (x1, x2) ] | = | x1 + x2 | |
[u'12'2 (x1) ] | = | 0 | |
[u'12'1 (x1, ..., x5) ] | = | 0 | |
[iff (x1, x2) ] | = | 0 | |
[if (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[u'8'1 (x1) ] | = | 0 | |
[x'2d (x1) ] | = | x1 + 1 | |
[sequent (x1, x2) ] | = | x1 + x2 | |
[u'4'1 (x1) ] | = | 0 | |
[u'10'1 (x1) ] | = | 0 | |
[intersect'ii'out] | = | 0 | |
[u'3'1 (x1) ] | = | 0 | |
[p (x1) ] | = | 0 | |
[tautology'i'in (x1) ] | = | 2 x1 | |
[u'2'1 (x1) ] | = | 0 | |
[reduce'ii'in (x1, x2) ] | = | 0 | |
[nil] | = | 0 | |
[reduce'ii'out] | = | 0 | |
[tautology'i'out] | = | 0 | |
[x'2b (x1, x2) ] | = | x1 + 2 x2 | |
[u'6'1# (x1, ..., x5) ] | = | 3 x1 + 2 x2 + 2 x3 | |
[u'14'1 (x1) ] | = | 0 | |
[u'16'1 (x1) ] | = | 0 | |
[u'9'1 (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | u'6'1#( reduce'ii'in( sequent( cons( F1 , Fs ) , Gs ) , NF ) , F2 , Fs , Gs , NF ) |
u'6'1#( reduce'ii'out , F2 , Fs , Gs , NF ) | → | reduce'ii'in#( sequent( cons( F2 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , Fs ) , Gs ) , NF ) |
u'12'1#( reduce'ii'out , Fs , G2 , Gs , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G2 , Gs ) ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2b( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , cons( G2 , Gs ) ) ) , NF ) |
The dependency pairs are split into 1 component(s).
u'6'1#( reduce'ii'out , F2 , Fs , Gs , NF ) | → | reduce'ii'in#( sequent( cons( F2 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | u'6'1#( reduce'ii'in( sequent( cons( F1 , Fs ) , Gs ) , NF ) , F2 , Fs , Gs , NF ) |
reduce'ii'in#( sequent( cons( x'2b( F1 , F2 ) , Fs ) , Gs ) , NF ) | → | reduce'ii'in#( sequent( cons( F1 , Fs ) , Gs ) , NF ) |
reduce'ii'in#( sequent( Fs , cons( x'2b( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , cons( G2 , Gs ) ) ) , NF ) |
Linear polynomial interpretation over the naturals
[u'13'1 (x1) ] | = | 0 | |
[u'6'2 (x1) ] | = | 0 | |
[u'7'1 (x1) ] | = | 0 | |
[reduce'ii'in# (x1, x2) ] | = | 2 x1 + x2 | |
[u'15'1 (x1) ] | = | 0 | |
[u'5'1 (x1) ] | = | 0 | |
[x'2a (x1, x2) ] | = | 0 | |
[intersect'ii'in (x1, x2) ] | = | 0 | |
[u'11'1 (x1) ] | = | 0 | |
[u'6'1 (x1, ..., x5) ] | = | 0 | |
[u'1'1 (x1) ] | = | 0 | |
[cons (x1, x2) ] | = | x1 | |
[u'12'2 (x1) ] | = | 0 | |
[u'12'1 (x1, ..., x5) ] | = | 0 | |
[iff (x1, x2) ] | = | 0 | |
[if (x1, x2) ] | = | 0 | |
[u'8'1 (x1) ] | = | 0 | |
[sequent (x1, x2) ] | = | x1 | |
[x'2d (x1) ] | = | 0 | |
[u'4'1 (x1) ] | = | 0 | |
[u'10'1 (x1) ] | = | 0 | |
[intersect'ii'out] | = | 0 | |
[u'3'1 (x1) ] | = | 0 | |
[p (x1) ] | = | 0 | |
[tautology'i'in (x1) ] | = | 3 x1 + 3 | |
[u'2'1 (x1) ] | = | 0 | |
[reduce'ii'in (x1, x2) ] | = | 0 | |
[nil] | = | 0 | |
[reduce'ii'out] | = | 0 | |
[tautology'i'out] | = | 0 | |
[u'6'1# (x1, ..., x5) ] | = | 3 x1 + x2 + 2 | |
[x'2b (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[u'14'1 (x1) ] | = | 0 | |
[u'16'1 (x1) ] | = | 0 | |
[u'9'1 (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
reduce'ii'in#( sequent( Fs , cons( x'2b( G1 , G2 ) , Gs ) ) , NF ) | → | reduce'ii'in#( sequent( Fs , cons( G1 , cons( G2 , Gs ) ) ) , NF ) |
Linear polynomial interpretation over the naturals
[u'13'1 (x1) ] | = | 0 | |
[u'6'2 (x1) ] | = | 0 | |
[u'7'1 (x1) ] | = | x1 | |
[reduce'ii'in# (x1, x2) ] | = | 2 x1 | |
[u'15'1 (x1) ] | = | 0 | |
[u'11'1 (x1) ] | = | x1 | |
[u'5'1 (x1) ] | = | 0 | |
[x'2a (x1, x2) ] | = | 0 | |
[intersect'ii'in (x1, x2) ] | = | 1 | |
[u'6'1 (x1, ..., x5) ] | = | x1 | |
[u'1'1 (x1) ] | = | x1 | |
[cons (x1, x2) ] | = | 2 x1 | |
[u'12'2 (x1) ] | = | 0 | |
[u'12'1 (x1, ..., x5) ] | = | x1 | |
[iff (x1, x2) ] | = | 0 | |
[if (x1, x2) ] | = | 0 | |
[u'8'1 (x1) ] | = | x1 | |
[x'2d (x1) ] | = | 0 | |
[sequent (x1, x2) ] | = | 2 x1 | |
[u'4'1 (x1) ] | = | x1 | |
[u'10'1 (x1) ] | = | x1 | |
[intersect'ii'out] | = | 0 | |
[u'3'1 (x1) ] | = | 0 | |
[p (x1) ] | = | 0 | |
[tautology'i'in (x1) ] | = | 3 x1 + 2 | |
[u'2'1 (x1) ] | = | 0 | |
[reduce'ii'in (x1, x2) ] | = | x1 | |
[nil] | = | 0 | |
[reduce'ii'out] | = | 0 | |
[tautology'i'out] | = | 1 | |
[x'2b (x1, x2) ] | = | 2 x1 + 2 | |
[u'14'1 (x1) ] | = | 0 | |
[u'16'1 (x1) ] | = | 1 | |
[u'9'1 (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
intersect'ii'in#( cons( X0 , Xs ) , Ys ) | → | intersect'ii'in#( Xs , Ys ) |
intersect'ii'in#( Xs , cons( X0 , Ys ) ) | → | intersect'ii'in#( Xs , Ys ) |
Linear polynomial interpretation over the naturals
[u'13'1 (x1) ] | = | 1 | |
[u'6'2 (x1) ] | = | 1 | |
[u'7'1 (x1) ] | = | 1 | |
[u'15'1 (x1) ] | = | 0 | |
[u'11'1 (x1) ] | = | 2 | |
[u'5'1 (x1) ] | = | 0 | |
[x'2a (x1, x2) ] | = | x1 | |
[intersect'ii'in (x1, x2) ] | = | x1 | |
[u'6'1 (x1, ..., x5) ] | = | 2 x1 + x2 + 1 | |
[u'1'1 (x1) ] | = | 1 | |
[cons (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[u'12'2 (x1) ] | = | 0 | |
[u'12'1 (x1, ..., x5) ] | = | x1 + x2 | |
[iff (x1, x2) ] | = | 0 | |
[if (x1, x2) ] | = | 0 | |
[u'8'1 (x1) ] | = | 2 | |
[x'2d (x1) ] | = | 0 | |
[sequent (x1, x2) ] | = | x1 + 2 x2 | |
[u'4'1 (x1) ] | = | 1 | |
[u'10'1 (x1) ] | = | 0 | |
[intersect'ii'out] | = | 0 | |
[u'3'1 (x1) ] | = | 0 | |
[p (x1) ] | = | x1 + 3 | |
[tautology'i'in (x1) ] | = | 2 | |
[u'2'1 (x1) ] | = | x1 | |
[reduce'ii'in (x1, x2) ] | = | x1 | |
[nil] | = | 0 | |
[reduce'ii'out] | = | 0 | |
[tautology'i'out] | = | 0 | |
[x'2b (x1, x2) ] | = | 0 | |
[u'14'1 (x1) ] | = | 3 | |
[u'16'1 (x1) ] | = | 1 | |
[u'9'1 (x1) ] | = | 0 | |
[intersect'ii'in# (x1, x2) ] | = | x1 + x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.