Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | a : symb | f : symb | g1 : symb | g2 : symb | h : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.a => 0 | M.f => 5 | M.g1 => 4 | M.g2 => 4 | M.h => 2 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition a := F0 M.a Vnil. Definition f x5 x4 x3 x2 x1 := F0 M.f (Vcons x5 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))))). Definition g1 x4 x3 x2 x1 := F0 M.g1 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition g2 x4 x3 x2 x1 := F0 M.g2 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition h x2 x1 := F0 M.h (Vcons x2 (Vcons x1 Vnil)). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.f (V0 0) (V0 1) (V0 2) (V0 2) S0.a) (S0.g1 (V0 0) (V0 0) (V0 1) (V0 2)) :: R0 (S0.f (V0 0) (V0 1) (V0 2) S0.a S0.a) (S0.g1 (V0 1) (V0 0) (V0 0) (V0 2)) :: R0 (S0.f (V0 0) (V0 1) S0.a S0.a (V0 2)) (S0.g2 (V0 0) (V0 1) (V0 1) (V0 2)) :: R0 (S0.f (V0 0) (V0 1) S0.a (V0 2) (V0 2)) (S0.g2 (V0 1) (V0 1) (V0 0) (V0 2)) :: R0 (S0.g1 (V0 0) (V0 0) (V0 2) S0.a) (S0.h (V0 0) (V0 2)) :: R0 (S0.g1 (V0 0) (V0 1) (V0 1) S0.a) (S0.h (V0 1) (V0 0)) :: R0 (S0.g2 (V0 0) (V0 1) (V0 1) S0.a) (S0.h (V0 0) (V0 1)) :: R0 (S0.g2 (V0 0) (V0 0) (V0 2) S0.a) (S0.h (V0 2) (V0 0)) :: R0 (S0.h (V0 0) (V0 0)) (V0 0) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition ha := F1 (hd_symb s1_p M.a) Vnil. Definition a := F1 (int_symb s1_p M.a) Vnil. Definition hf x5 x4 x3 x2 x1 := F1 (hd_symb s1_p M.f) (Vcons x5 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))))). Definition f x5 x4 x3 x2 x1 := F1 (int_symb s1_p M.f) (Vcons x5 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))))). Definition hg1 x4 x3 x2 x1 := F1 (hd_symb s1_p M.g1) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition g1 x4 x3 x2 x1 := F1 (int_symb s1_p M.g1) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition hg2 x4 x3 x2 x1 := F1 (hd_symb s1_p M.g2) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition g2 x4 x3 x2 x1 := F1 (int_symb s1_p M.g2) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition hh x2 x1 := F1 (hd_symb s1_p M.h) (Vcons x2 (Vcons x1 Vnil)). Definition h x2 x1 := F1 (int_symb s1_p M.h) (Vcons x2 (Vcons x1 Vnil)). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hg2 (V1 0) (V1 0) (V1 2) (S1.a)) (S1.hh (V1 2) (V1 0)) :: nil) :: ( R1 (S1.hg2 (V1 0) (V1 1) (V1 1) (S1.a)) (S1.hh (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hg1 (V1 0) (V1 1) (V1 1) (S1.a)) (S1.hh (V1 1) (V1 0)) :: nil) :: ( R1 (S1.hg1 (V1 0) (V1 0) (V1 2) (S1.a)) (S1.hh (V1 0) (V1 2)) :: nil) :: ( R1 (S1.hf (V1 0) (V1 1) (S1.a) (V1 2) (V1 2)) (S1.hg2 (V1 1) (V1 1) (V1 0) (V1 2)) :: nil) :: ( R1 (S1.hf (V1 0) (V1 1) (S1.a) (S1.a) (V1 2)) (S1.hg2 (V1 0) (V1 1) (V1 1) (V1 2)) :: nil) :: ( R1 (S1.hf (V1 0) (V1 1) (V1 2) (S1.a) (S1.a)) (S1.hg1 (V1 1) (V1 0) (V1 0) (V1 2)) :: nil) :: ( R1 (S1.hf (V1 0) (V1 1) (V1 2) (V1 2) (S1.a)) (S1.hg1 (V1 0) (V1 0) (V1 1) (V1 2)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. Qed.