Certification Problem                    
                
Input (COPS 592)
We consider the TRS containing the following rules:
| 
not(true) | 
→ | 
false | 
(1) | 
| 
not(false) | 
→ | 
true | 
(2) | 
| 
or(true,y) | 
→ | 
true | 
(3) | 
| 
or(x,true) | 
→ | 
true | 
(4) | 
| 
or(false,false) | 
→ | 
false | 
(5) | 
| 
and(true,true) | 
→ | 
true | 
(6) | 
| 
and(x,true) | 
→ | 
x | 
(7) | 
| 
and(true,y) | 
→ | 
y | 
(8) | 
| 
and(false,false) | 
→ | 
false | 
(9) | 
| 
not(and(x,y)) | 
→ | 
or(not(x),not(y)) | 
(10) | 
| 
not(or(x,y)) | 
→ | 
and(not(x),not(y)) | 
(11) | 
The underlying signature is as follows:
{not/1, true/0, false/0, or/2, and/2}Property / Task
Prove or disprove confluence.Answer / Result
No.Proof (by csi @ CoCo 2021)
1 Non-Joinable Fork
        The system is not confluent due to the following forking derivations.  
        
| t0
 | 
= | 
not(or(true,y)) | 
 | 
→
 | 
not(true) | 
 | 
→
 | 
false | 
 | 
= | 
t2
 | 
| t0
 | 
= | 
not(or(true,y)) | 
 | 
→
 | 
and(not(true),not(y)) | 
 | 
→
 | 
and(false,not(y)) | 
 | 
= | 
t2
 | 
            
        The two resulting terms cannot be joined for the following reason:
        - When applying the cap-function on both terms (where variables may be treated like constants)
            then the resulting terms do not unify.