Certification Problem                    
                
Input (TPDB SRS_Standard/ICFP_2010/211857)
The rewrite relation of the following TRS is considered.
| 
0(0(1(x1))) | 
→ | 
0(1(2(0(x1)))) | 
(1) | 
| 
0(0(1(x1))) | 
→ | 
0(3(1(0(x1)))) | 
(2) | 
| 
0(0(1(x1))) | 
→ | 
1(0(4(0(x1)))) | 
(3) | 
| 
0(0(1(x1))) | 
→ | 
0(1(3(0(2(x1))))) | 
(4) | 
| 
0(0(1(x1))) | 
→ | 
0(1(3(0(4(x1))))) | 
(5) | 
| 
0(0(1(x1))) | 
→ | 
0(2(0(1(2(x1))))) | 
(6) | 
| 
0(0(1(x1))) | 
→ | 
0(3(0(1(2(x1))))) | 
(7) | 
| 
0(0(1(x1))) | 
→ | 
0(3(0(3(1(x1))))) | 
(8) | 
| 
0(0(1(x1))) | 
→ | 
0(4(0(4(1(x1))))) | 
(9) | 
| 
0(0(1(x1))) | 
→ | 
1(2(0(2(0(x1))))) | 
(10) | 
| 
0(0(1(x1))) | 
→ | 
1(2(2(0(0(x1))))) | 
(11) | 
| 
0(0(1(x1))) | 
→ | 
0(0(2(2(1(2(x1)))))) | 
(12) | 
| 
0(0(1(x1))) | 
→ | 
0(1(2(4(2(0(x1)))))) | 
(13) | 
| 
0(0(1(x1))) | 
→ | 
1(2(0(3(0(4(x1)))))) | 
(14) | 
| 
0(1(1(x1))) | 
→ | 
0(2(1(1(x1)))) | 
(15) | 
| 
0(1(1(x1))) | 
→ | 
0(3(1(1(x1)))) | 
(16) | 
| 
0(1(1(x1))) | 
→ | 
1(1(3(0(4(x1))))) | 
(17) | 
| 
0(1(1(x1))) | 
→ | 
1(2(0(2(1(x1))))) | 
(18) | 
| 
0(1(1(x1))) | 
→ | 
1(0(3(1(2(4(x1)))))) | 
(19) | 
| 
0(1(1(x1))) | 
→ | 
1(0(4(2(1(2(x1)))))) | 
(20) | 
| 
0(1(1(x1))) | 
→ | 
1(1(2(4(3(0(x1)))))) | 
(21) | 
| 
0(1(1(x1))) | 
→ | 
1(2(1(0(4(4(x1)))))) | 
(22) | 
| 
0(1(1(x1))) | 
→ | 
1(2(2(1(3(0(x1)))))) | 
(23) | 
| 
0(5(1(x1))) | 
→ | 
0(3(1(5(x1)))) | 
(24) | 
| 
0(5(1(x1))) | 
→ | 
0(4(5(1(x1)))) | 
(25) | 
| 
0(5(1(x1))) | 
→ | 
0(2(3(1(5(x1))))) | 
(26) | 
| 
0(5(1(x1))) | 
→ | 
0(3(1(5(2(x1))))) | 
(27) | 
| 
0(5(1(x1))) | 
→ | 
0(3(1(2(5(2(x1)))))) | 
(28) | 
| 
5(0(1(x1))) | 
→ | 
5(1(2(4(0(x1))))) | 
(29) | 
| 
5(0(1(x1))) | 
→ | 
5(0(2(1(2(4(x1)))))) | 
(30) | 
| 
5(0(1(x1))) | 
→ | 
5(1(2(3(0(4(x1)))))) | 
(31) | 
| 
0(0(1(5(x1)))) | 
→ | 
0(4(1(0(5(x1))))) | 
(32) | 
| 
0(0(2(1(x1)))) | 
→ | 
2(0(3(0(2(1(x1)))))) | 
(33) | 
| 
0(0(2(1(x1)))) | 
→ | 
2(3(0(2(0(1(x1)))))) | 
(34) | 
| 
0(1(0(1(x1)))) | 
→ | 
1(0(2(0(1(x1))))) | 
(35) | 
| 
0(1(1(1(x1)))) | 
→ | 
1(1(3(1(0(x1))))) | 
(36) | 
| 
5(0(1(1(x1)))) | 
→ | 
1(5(1(2(0(x1))))) | 
(37) | 
| 
5(3(0(1(x1)))) | 
→ | 
5(1(2(3(0(x1))))) | 
(38) | 
| 
5(3(1(5(x1)))) | 
→ | 
5(3(1(2(5(x1))))) | 
(39) | 
| 
5(3(2(1(x1)))) | 
→ | 
1(2(3(5(2(x1))))) | 
(40) | 
| 
5(4(0(1(x1)))) | 
→ | 
1(2(5(0(4(x1))))) | 
(41) | 
| 
0(0(5(1(5(x1))))) | 
→ | 
1(2(5(5(0(0(x1)))))) | 
(42) | 
| 
0(5(3(0(1(x1))))) | 
→ | 
1(0(5(3(0(4(x1)))))) | 
(43) | 
| 
0(5(3(4(1(x1))))) | 
→ | 
1(0(3(5(4(5(x1)))))) | 
(44) | 
| 
0(5(4(0(1(x1))))) | 
→ | 
0(1(3(0(4(5(x1)))))) | 
(45) | 
| 
5(4(2(1(1(x1))))) | 
→ | 
5(4(1(2(1(2(x1)))))) | 
(46) | 
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by NaTT @ termCOMP 2023)
1 Dependency Pair Transformation
          The following set of initial dependency pairs has been identified.
          
| 
0#(0(1(x1))) | 
→ | 
0#(x1) | 
(47) | 
| 
0#(5(1(x1))) | 
→ | 
0#(4(5(1(x1)))) | 
(48) | 
| 
0#(5(1(x1))) | 
→ | 
0#(3(1(5(x1)))) | 
(49) | 
| 
0#(0(1(x1))) | 
→ | 
0#(0(2(2(1(2(x1)))))) | 
(50) | 
| 
0#(1(1(x1))) | 
→ | 
0#(3(1(2(4(x1))))) | 
(51) | 
| 
0#(0(1(x1))) | 
→ | 
0#(1(2(x1))) | 
(52) | 
| 
5#(0(1(x1))) | 
→ | 
0#(2(1(2(4(x1))))) | 
(53) | 
| 
5#(0(1(x1))) | 
→ | 
5#(0(2(1(2(4(x1)))))) | 
(54) | 
| 
5#(0(1(x1))) | 
→ | 
5#(1(2(3(0(4(x1)))))) | 
(55) | 
| 
0#(0(1(x1))) | 
→ | 
0#(x1) | 
(47) | 
| 
5#(3(1(5(x1)))) | 
→ | 
5#(3(1(2(5(x1))))) | 
(56) | 
| 
0#(5(3(4(1(x1))))) | 
→ | 
0#(3(5(4(5(x1))))) | 
(57) | 
| 
0#(1(1(x1))) | 
→ | 
0#(3(1(1(x1)))) | 
(58) | 
| 
0#(0(1(x1))) | 
→ | 
0#(2(0(x1))) | 
(59) | 
| 
0#(0(1(x1))) | 
→ | 
0#(x1) | 
(47) | 
| 
0#(0(1(x1))) | 
→ | 
0#(1(2(0(x1)))) | 
(60) | 
| 
0#(1(1(x1))) | 
→ | 
0#(4(4(x1))) | 
(61) | 
| 
0#(5(1(x1))) | 
→ | 
0#(3(1(5(2(x1))))) | 
(62) | 
| 
5#(0(1(x1))) | 
→ | 
0#(4(x1)) | 
(63) | 
| 
5#(0(1(x1))) | 
→ | 
5#(1(2(4(0(x1))))) | 
(64) | 
| 
0#(0(2(1(x1)))) | 
→ | 
0#(2(0(1(x1)))) | 
(65) | 
| 
0#(5(3(4(1(x1))))) | 
→ | 
5#(x1) | 
(66) | 
| 
0#(5(1(x1))) | 
→ | 
0#(2(3(1(5(x1))))) | 
(67) | 
| 
0#(0(1(x1))) | 
→ | 
0#(4(x1)) | 
(68) | 
| 
0#(0(1(x1))) | 
→ | 
0#(1(3(0(4(x1))))) | 
(69) | 
| 
0#(0(5(1(5(x1))))) | 
→ | 
0#(x1) | 
(70) | 
| 
5#(4(2(1(1(x1))))) | 
→ | 
5#(4(1(2(1(2(x1)))))) | 
(71) | 
| 
0#(0(5(1(5(x1))))) | 
→ | 
5#(0(0(x1))) | 
(72) | 
| 
0#(5(1(x1))) | 
→ | 
5#(2(x1)) | 
(73) | 
| 
0#(0(1(x1))) | 
→ | 
0#(3(0(3(1(x1))))) | 
(74) | 
| 
0#(0(1(x1))) | 
→ | 
0#(x1) | 
(47) | 
| 
0#(1(1(x1))) | 
→ | 
0#(x1) | 
(75) | 
| 
0#(0(1(x1))) | 
→ | 
0#(1(2(4(2(0(x1)))))) | 
(76) | 
| 
0#(1(1(x1))) | 
→ | 
0#(2(1(x1))) | 
(77) | 
| 
0#(1(1(x1))) | 
→ | 
0#(2(1(1(x1)))) | 
(78) | 
| 
0#(0(1(x1))) | 
→ | 
0#(3(0(1(2(x1))))) | 
(79) | 
| 
0#(1(1(1(x1)))) | 
→ | 
0#(x1) | 
(80) | 
| 
0#(0(5(1(5(x1))))) | 
→ | 
0#(0(x1)) | 
(81) | 
| 
0#(1(1(x1))) | 
→ | 
0#(x1) | 
(75) | 
| 
0#(0(1(x1))) | 
→ | 
0#(1(3(0(2(x1))))) | 
(82) | 
| 
0#(5(1(x1))) | 
→ | 
0#(3(1(2(5(2(x1)))))) | 
(83) | 
| 
5#(4(0(1(x1)))) | 
→ | 
5#(0(4(x1))) | 
(84) | 
| 
0#(5(1(x1))) | 
→ | 
5#(2(x1)) | 
(73) | 
| 
0#(5(1(x1))) | 
→ | 
5#(x1) | 
(85) | 
| 
0#(0(1(x1))) | 
→ | 
0#(4(x1)) | 
(68) | 
| 
0#(0(1(x1))) | 
→ | 
0#(x1) | 
(47) | 
| 
0#(0(1(x1))) | 
→ | 
0#(4(0(4(1(x1))))) | 
(86) | 
| 
0#(0(1(x1))) | 
→ | 
0#(2(0(1(2(x1))))) | 
(87) | 
| 
5#(0(1(x1))) | 
→ | 
0#(x1) | 
(88) | 
| 
0#(0(1(x1))) | 
→ | 
0#(3(0(4(x1)))) | 
(89) | 
| 
0#(0(5(1(5(x1))))) | 
→ | 
5#(5(0(0(x1)))) | 
(90) | 
| 
0#(0(1(5(x1)))) | 
→ | 
0#(4(1(0(5(x1))))) | 
(91) | 
| 
0#(5(4(0(1(x1))))) | 
→ | 
0#(4(5(x1))) | 
(92) | 
| 
0#(0(1(x1))) | 
→ | 
0#(4(0(x1))) | 
(93) | 
| 
0#(5(3(0(1(x1))))) | 
→ | 
0#(4(x1)) | 
(94) | 
| 
0#(1(1(x1))) | 
→ | 
0#(4(2(1(2(x1))))) | 
(95) | 
| 
0#(0(1(5(x1)))) | 
→ | 
0#(5(x1)) | 
(96) | 
| 
0#(0(1(x1))) | 
→ | 
0#(x1) | 
(47) | 
| 
5#(3(2(1(x1)))) | 
→ | 
5#(2(x1)) | 
(97) | 
| 
0#(5(4(0(1(x1))))) | 
→ | 
5#(x1) | 
(98) | 
| 
0#(0(1(x1))) | 
→ | 
0#(0(x1)) | 
(99) | 
| 
0#(0(2(1(x1)))) | 
→ | 
0#(1(x1)) | 
(100) | 
| 
5#(0(1(1(x1)))) | 
→ | 
0#(x1) | 
(101) | 
| 
0#(5(4(0(1(x1))))) | 
→ | 
0#(1(3(0(4(5(x1)))))) | 
(102) | 
| 
5#(3(0(1(x1)))) | 
→ | 
0#(x1) | 
(103) | 
| 
0#(1(1(x1))) | 
→ | 
0#(4(x1)) | 
(104) | 
| 
0#(0(1(x1))) | 
→ | 
0#(4(1(x1))) | 
(105) | 
| 
0#(5(1(x1))) | 
→ | 
5#(x1) | 
(85) | 
| 
0#(0(1(x1))) | 
→ | 
0#(2(2(1(2(x1))))) | 
(106) | 
| 
0#(0(1(x1))) | 
→ | 
0#(1(2(x1))) | 
(52) | 
| 
5#(0(1(1(x1)))) | 
→ | 
5#(1(2(0(x1)))) | 
(107) | 
| 
0#(5(3(0(1(x1))))) | 
→ | 
0#(5(3(0(4(x1))))) | 
(108) | 
| 
0#(0(1(x1))) | 
→ | 
0#(3(1(x1))) | 
(109) | 
| 
0#(0(1(x1))) | 
→ | 
0#(3(1(0(x1)))) | 
(110) | 
| 
0#(5(3(4(1(x1))))) | 
→ | 
5#(4(5(x1))) | 
(111) | 
| 
0#(1(0(1(x1)))) | 
→ | 
0#(2(0(1(x1)))) | 
(112) | 
| 
5#(4(0(1(x1)))) | 
→ | 
0#(4(x1)) | 
(113) | 
| 
0#(5(3(0(1(x1))))) | 
→ | 
5#(3(0(4(x1)))) | 
(114) | 
| 
0#(0(1(x1))) | 
→ | 
0#(2(x1)) | 
(115) | 
| 
0#(0(2(1(x1)))) | 
→ | 
0#(3(0(2(1(x1))))) | 
(116) | 
| 
5#(3(0(1(x1)))) | 
→ | 
5#(1(2(3(0(x1))))) | 
(117) | 
1.1 Dependency Graph Processor
The dependency pairs are split into 1
        component.