Certification Problem
Input (TPDB SRS_Standard/ICFP_2010/264033)
The rewrite relation of the following TRS is considered.
|
0(0(1(0(2(x1))))) |
→ |
0(0(1(2(2(x1))))) |
(1) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(2(1(2(x1))))) |
(2) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(3) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(4) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(0(2(x1))))) |
(5) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(0(x1))))) |
(6) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(7) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(8) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(9) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(10) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(11) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(12) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(13) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(14) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(15) |
|
0(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(16) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(17) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(18) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(19) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(20) |
|
0(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(21) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(22) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(23) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(24) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(25) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(26) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(27) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(28) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(29) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(30) |
|
0(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(31) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(32) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(33) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(34) |
|
1(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(35) |
|
1(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(36) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(37) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(38) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(39) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(40) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(41) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(42) |
|
1(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(43) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(44) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(45) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(46) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(47) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(48) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(49) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(50) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(51) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(52) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(53) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(54) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(55) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(56) |
|
1(0(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(57) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(58) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(59) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(60) |
|
1(0(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(61) |
|
1(0(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(62) |
|
1(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(63) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(64) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(65) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(66) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(67) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(68) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(69) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(70) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(71) |
|
1(1(2(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(72) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(73) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(74) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(75) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(76) |
|
1(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(77) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(78) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(79) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(80) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(81) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(82) |
|
1(2(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(83) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(84) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(85) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(86) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(87) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(88) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(89) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(90) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(91) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(92) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(1(0(2(x1))))) |
(93) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(94) |
|
2(1(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(95) |
|
2(1(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(96) |
|
2(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(97) |
|
2(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(98) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(99) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(100) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by NaTT @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
There are 380 ruless (increase limit for explicit display).
1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.
-
The
1st
component contains the
pair
There are 380 ruless (increase limit for explicit display).
1.1.1 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [0#(x1)] |
=
|
x1 + 11798 |
| [1(x1)] |
=
|
x1 + 11799 |
| [2#(x1)] |
=
|
x1 + 0 |
| [0(x1)] |
=
|
x1 + 11799 |
| [2(x1)] |
=
|
x1 + 1 |
| [1#(x1)] |
=
|
x1 + 1 |
together with the usable
rules
|
0(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(18) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(50) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(80) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(4) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(15) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(8) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(54) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(1(2(2(x1))))) |
(1) |
|
1(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(77) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(3) |
|
0(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(16) |
|
0(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(21) |
|
1(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(36) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(68) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(85) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(100) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(26) |
|
1(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(63) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(19) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(32) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(17) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(60) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(27) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(87) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(84) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(34) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(22) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(28) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(65) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(44) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(0(2(x1))))) |
(5) |
|
1(1(2(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(72) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(33) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(64) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(1(0(2(x1))))) |
(93) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(92) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(10) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(39) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(7) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(88) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(20) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(25) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(49) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(52) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(30) |
|
1(0(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(62) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(14) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(82) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(89) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(56) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(79) |
|
0(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(31) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(12) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(69) |
|
2(1(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(96) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(45) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(78) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(81) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(23) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(70) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(24) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(94) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(76) |
|
1(0(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(57) |
|
2(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(98) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(11) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(9) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(13) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(51) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(90) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(40) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(67) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(55) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(59) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(0(x1))))) |
(6) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(38) |
|
1(0(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(61) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(58) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(74) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(75) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(48) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(71) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(53) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(47) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(73) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(91) |
|
2(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(97) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(99) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(37) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(41) |
|
2(1(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(95) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(42) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(46) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(66) |
|
1(2(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(83) |
|
1(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(35) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(29) |
|
1(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(43) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(86) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(2(1(2(x1))))) |
(2) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairsThere are 363 ruless (increase limit for explicit display).
could be deleted.
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 3
components.
-
The
1st
component contains the
pair
|
2#(1(2(0(2(x1))))) |
→ |
2#(2(2(1(0(x1))))) |
(116) |
|
2#(1(1(0(2(x1))))) |
→ |
2#(0(1(0(2(x1))))) |
(163) |
|
2#(1(2(0(2(x1))))) |
→ |
2#(1(0(2(2(x1))))) |
(330) |
|
2#(1(2(0(2(x1))))) |
→ |
2#(0(1(2(2(x1))))) |
(247) |
|
2#(1(2(0(2(x1))))) |
→ |
2#(2(1(0(2(x1))))) |
(248) |
1.1.1.1.1 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [0#(x1)] |
=
|
x1 + 11798 |
| [1(x1)] |
=
|
1144 |
| [2#(x1)] |
=
|
x1 + 0 |
| [0(x1)] |
=
|
x1 + 0 |
| [2(x1)] |
=
|
1143 |
| [1#(x1)] |
=
|
x1 + 1 |
together with the usable
rules
|
0(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(18) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(50) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(80) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(4) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(15) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(8) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(54) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(1(2(2(x1))))) |
(1) |
|
1(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(77) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(3) |
|
0(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(16) |
|
0(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(21) |
|
1(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(36) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(68) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(85) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(100) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(26) |
|
1(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(63) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(19) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(32) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(17) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(60) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(27) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(87) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(84) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(34) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(22) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(28) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(65) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(44) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(0(2(x1))))) |
(5) |
|
1(1(2(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(72) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(33) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(64) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(1(0(2(x1))))) |
(93) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(92) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(10) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(39) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(7) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(88) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(20) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(25) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(49) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(52) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(30) |
|
1(0(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(62) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(14) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(82) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(89) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(56) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(79) |
|
0(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(31) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(12) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(69) |
|
2(1(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(96) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(45) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(78) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(81) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(23) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(70) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(24) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(94) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(76) |
|
1(0(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(57) |
|
2(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(98) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(11) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(9) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(13) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(51) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(90) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(40) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(67) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(55) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(59) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(0(x1))))) |
(6) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(38) |
|
1(0(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(61) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(58) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(74) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(75) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(48) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(71) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(53) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(47) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(73) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(91) |
|
2(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(97) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(99) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(37) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(41) |
|
2(1(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(95) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(42) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(46) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(66) |
|
1(2(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(83) |
|
1(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(35) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(29) |
|
1(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(43) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(86) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(2(1(2(x1))))) |
(2) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
|
2#(1(2(0(2(x1))))) |
→ |
2#(2(2(1(0(x1))))) |
(116) |
|
2#(1(2(0(2(x1))))) |
→ |
2#(2(1(0(2(x1))))) |
(248) |
could be deleted.
1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.
-
The
2nd
component contains the
pair
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(2(0(2(x1))))) |
(244) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(1(0(2(2(x1))))) |
(313) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(2(1(2(x1))))) |
(113) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(2(2(0(x1))))) |
(205) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(1(2(2(x1))))) |
(238) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(2(1(0(2(x1))))) |
(296) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(0(2(2(x1))))) |
(334) |
|
1#(2(2(0(2(x1))))) |
→ |
1#(0(2(2(2(x1))))) |
(286) |
1.1.1.1.2 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [0#(x1)] |
=
|
11798 |
| [1(x1)] |
=
|
43325 |
| [2#(x1)] |
=
|
0 |
| [0(x1)] |
=
|
x1 + 0 |
| [2(x1)] |
=
|
43324 |
| [1#(x1)] |
=
|
x1 + 1 |
together with the usable
rules
|
0(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(18) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(50) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(80) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(4) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(15) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(8) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(54) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(1(2(2(x1))))) |
(1) |
|
1(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(77) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(3) |
|
0(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(16) |
|
0(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(21) |
|
1(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(36) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(68) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(85) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(100) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(26) |
|
1(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(63) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(19) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(32) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(17) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(60) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(27) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(87) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(84) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(34) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(22) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(28) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(65) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(44) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(0(2(x1))))) |
(5) |
|
1(1(2(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(72) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(33) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(64) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(1(0(2(x1))))) |
(93) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(92) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(10) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(39) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(7) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(88) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(20) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(25) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(49) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(52) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(30) |
|
1(0(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(62) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(14) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(82) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(89) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(56) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(79) |
|
0(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(31) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(12) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(69) |
|
2(1(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(96) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(45) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(78) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(81) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(23) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(70) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(24) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(94) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(76) |
|
1(0(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(57) |
|
2(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(98) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(11) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(9) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(13) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(51) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(90) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(40) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(67) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(55) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(59) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(0(x1))))) |
(6) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(38) |
|
1(0(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(61) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(58) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(74) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(75) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(48) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(71) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(53) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(47) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(73) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(91) |
|
2(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(97) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(99) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(37) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(41) |
|
2(1(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(95) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(42) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(46) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(66) |
|
1(2(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(83) |
|
1(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(35) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(29) |
|
1(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(43) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(86) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(2(1(2(x1))))) |
(2) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(2(0(2(x1))))) |
(244) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(2(1(2(x1))))) |
(113) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(2(2(0(x1))))) |
(205) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(2(1(0(2(x1))))) |
(296) |
|
1#(1(2(0(2(x1))))) |
→ |
1#(0(0(2(2(x1))))) |
(334) |
could be deleted.
1.1.1.1.2.1 Dependency Graph Processor
The dependency pairs are split into 1
component.
-
The
3rd
component contains the
pair
|
0#(1(2(0(2(x1))))) |
→ |
0#(2(1(0(2(x1))))) |
(326) |
|
0#(1(2(0(2(x1))))) |
→ |
0#(1(1(2(2(x1))))) |
(331) |
|
0#(1(2(0(2(x1))))) |
→ |
0#(1(0(2(2(x1))))) |
(354) |
|
0#(1(2(0(2(x1))))) |
→ |
0#(2(2(1(0(x1))))) |
(198) |
1.1.1.1.3 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [0#(x1)] |
=
|
x1 + 11798 |
| [1(x1)] |
=
|
13507 |
| [2#(x1)] |
=
|
0 |
| [0(x1)] |
=
|
13507 |
| [2(x1)] |
=
|
13506 |
| [1#(x1)] |
=
|
1 |
together with the usable
rules
|
0(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(18) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(50) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(80) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(4) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(15) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(8) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(54) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(1(2(2(x1))))) |
(1) |
|
1(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(77) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(3) |
|
0(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(16) |
|
0(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(21) |
|
1(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(36) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(68) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(85) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(100) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(26) |
|
1(1(2(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(63) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(19) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(32) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(17) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(60) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(0(2(x1))))) |
(27) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(87) |
|
2(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(84) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(34) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(22) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(28) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(65) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(44) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(0(2(x1))))) |
(5) |
|
1(1(2(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(72) |
|
0(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(33) |
|
1(1(2(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(64) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(1(0(2(x1))))) |
(93) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(92) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(10) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(39) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(7) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(88) |
|
0(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(20) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(1(2(2(x1))))) |
(25) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(49) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(2(0(x1))))) |
(52) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(30) |
|
1(0(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(62) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(14) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(82) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(89) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(56) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(79) |
|
0(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(31) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(12) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(69) |
|
2(1(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(96) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(45) |
|
1(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(78) |
|
1(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(81) |
|
0(0(1(0(2(x1))))) |
→ |
2(2(2(1(0(x1))))) |
(23) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(70) |
|
0(1(2(0(2(x1))))) |
→ |
0(1(0(2(2(x1))))) |
(24) |
|
2(1(1(0(2(x1))))) |
→ |
2(0(2(1(2(x1))))) |
(94) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(76) |
|
1(0(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(57) |
|
2(1(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(98) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(2(1(2(x1))))) |
(11) |
|
0(0(1(0(2(x1))))) |
→ |
0(2(1(2(2(x1))))) |
(9) |
|
0(0(1(0(2(x1))))) |
→ |
1(0(2(0(2(x1))))) |
(13) |
|
1(0(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(51) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(90) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(1(2(x1))))) |
(40) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(67) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(55) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(59) |
|
0(0(1(0(2(x1))))) |
→ |
0(1(2(2(0(x1))))) |
(6) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(1(2(2(x1))))) |
(38) |
|
1(0(2(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(61) |
|
1(0(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(58) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(1(0(2(x1))))) |
(74) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(75) |
|
1(0(1(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(48) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(71) |
|
1(0(1(0(2(x1))))) |
→ |
2(2(0(1(2(x1))))) |
(53) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(2(0(x1))))) |
(47) |
|
1(1(2(0(2(x1))))) |
→ |
1(2(0(2(2(x1))))) |
(73) |
|
2(0(1(0(2(x1))))) |
→ |
2(2(1(2(0(x1))))) |
(91) |
|
2(1(2(0(2(x1))))) |
→ |
2(0(1(2(2(x1))))) |
(97) |
|
2(1(2(0(2(x1))))) |
→ |
2(2(1(0(2(x1))))) |
(99) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(37) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(0(x1))))) |
(41) |
|
2(1(1(0(2(x1))))) |
→ |
2(1(2(0(2(x1))))) |
(95) |
|
1(0(1(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(42) |
|
1(0(1(0(2(x1))))) |
→ |
1(2(2(0(2(x1))))) |
(46) |
|
1(1(2(0(2(x1))))) |
→ |
1(0(0(2(2(x1))))) |
(66) |
|
1(2(2(0(2(x1))))) |
→ |
1(0(2(2(2(x1))))) |
(83) |
|
1(0(1(0(2(x1))))) |
→ |
0(1(2(2(2(x1))))) |
(35) |
|
0(1(2(0(2(x1))))) |
→ |
0(2(2(1(0(x1))))) |
(29) |
|
1(0(1(0(2(x1))))) |
→ |
1(1(0(2(2(x1))))) |
(43) |
|
2(0(1(0(2(x1))))) |
→ |
2(1(0(2(2(x1))))) |
(86) |
|
0(0(1(0(2(x1))))) |
→ |
0(0(2(1(2(x1))))) |
(2) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
|
0#(1(2(0(2(x1))))) |
→ |
0#(2(1(0(2(x1))))) |
(326) |
|
0#(1(2(0(2(x1))))) |
→ |
0#(2(2(1(0(x1))))) |
(198) |
could be deleted.
1.1.1.1.3.1 Dependency Graph Processor
The dependency pairs are split into 1
component.